Схема импульсного блока питания для усилителя. Простой импульсный бп для умзч Блок питания для унч

Изготовление хорошего источника питания для усилителя мощности (УНЧ) или другого электронного устройства - это очень ответственная задача. От того, каким будет источник питания зависит качество и стабильность работы всего устройства.

В этой публикации расскажу о изготовлении не сложного трансформаторного блока питания для моего самодельного усилителя мощности низкой частоты "Phoenix P-400".

Такой, не сложный блок питания можно использовать для питания различных схем усилителей мощности низкой частоты.

Предисловие

Для будущего блока питания (БП) к усилителю у меня уже был в наличии тороидальный сердечник с намотанной первичной обмоткой на ~220В, поэтому задача выбора "импульсный БП или на основе сетевого трансформатора" не стояла.

У импульсных источников питания небольшие габариты и вес, большая мощность на выходе и высокий КПД. Источник питания на основе сетевого трансформатора - имеет большой вес, прост в изготовлении и наладке, а также не приходится иметь дело с опасными напряжениями при наладке схемы, что особенно важно для таких начинающих как я.

Тороидальный трансформатор

Тороидальные трансформаторы, в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин, имеют несколько преимуществ:

  • меньший объем и вес;
  • более высокий КПД;
  • лучшее охлаждение для обмоток.

Первичная обмотка уже содержала примерно 800 витков проводом ПЭЛШО 0,8мм, она была залита парафином и заизолирована слоем тонкой ленты из фторопласта.

Измерив приблизительные размеры железа трансформатора можно выполнить расчет его габаритной мощности, таким образом можно прикинуть подходит ли сердечник для получения нужной мощности или нет.

Рис. 1. Размеры железного сердечника для тороидального трансформатора.

  • Габаритная мощность (Вт) = Площадь окна (см 2) * Площадь сечения (см 2)
  • Площадь окна = 3,14 * (d/2) 2
  • Площадь сечения = h * ((D-d)/2)

Для примера, выполним расчет трансформатора с размерами железа: D=14см, d=5см, h=5см.

  • Площадь окна = 3,14 * (5см/2) * (5см/2) = 19,625 см 2
  • Площадь сечения = 5см * ((14см-5см)/2) = 22,5 см 2
  • Габаритная мощность = 19,625 * 22,5 = 441 Вт.

Габаритная мощность используемого мною трансформатора оказалась явно меньшей чем я ожидал - где-то 250 Ватт.

Подбор напряжений для вторичных обмоток

Зная необходимое напряжение на выходе выпрямителя после электролитических конденсаторов, можно приблизительно рассчитать необходимое напряжение на выходе вторичной обмотки трансформатора.

Числовое значение постоянного напряжения после диодного моста и сглаживающих конденсаторов возрастет примерно в 1,3..1,4 раза, по сравнению с переменным напряжением, подаваемым на вход такого выпрямителя.

В моем случае, для питания УМЗЧ нужно двуполярное постоянное напряжение - по 35 Вольт на каждом плече. Соответственно, на каждой вторичной обмотке должно присутствовать переменное напряжение: 35 Вольт / 1,4 = ~25 Вольт.

По такому же принципу я выполнил приблизительный расчет значений напряжения для других вторичных обмоток трансформатора.

Расчет количества витков и намотка

Для питания остальных электронных блоков усилителя было решено намотать несколько отдельных вторичных обмоток. Для намотки катушек медным эмалированным проводом был изготовлен деревянный челнок. Также его можно изготовить из стеклотекстолита или пластмассы.

Рис. 2. Челнок для намотки тороидального трансформатора.

Намотка выполнялась медным эмалированным проводом, который был в наличии:

  • для 4х обмоток питания УМЗЧ - провод диаметром 1,5 мм;
  • для остальных обмоток - 0,6 мм.

Число витков для вторичных обмоток я подбирал экспериментальным способом, поскольку мне не было известно точное количество витков первичной обмотки.

Суть метода:

  1. Выполняем намотку 20 витков любого провода;
  2. Подключаем к сети ~220В первичную обмотку трансформатора и измеряем напряжение на намотанных 20-ти витках;
  3. Делим нужное напряжение на полученное из 20-ти витков - узнаем сколько раз по 20 витков нужно для намотки.

Например: нам нужно 25В, а из 20-ти витков получилось 5В, 25В/5В=5 - нужно 5 раз намотать по 20 витков, то есть 100 витков.

Расчет длины необходимого провода был выполнен так: намотал 20 витков провода, сделал на нем метку маркером, отмотал и измерил его длину. Разделил нужное количество витков на 20, полученное значение умножил на длину 20-ти витков провода - получил приблизительно необходимую длину провода для намотки. Добавив 1-2 метра запаса к общей длине можно наматывать провод на челнок и смело отрезать.

Например: нужно 100 витков провода, длина 20-ти намотанных витков получилась 1,3 метра, узнаем сколько раз по 1,3 метра нужно намотать для получения 100 витков - 100/20=5, узнаем общую длину провода (5 кусков по 1,3м) - 1,3*5=6,5м. Добавляем для запаса 1,5м и получаем длину - 8м.

Для каждой последующей обмотки измерение стоит повторить, поскольку с каждой новой обмоткой необходимая на один виток длина провода будет увеличиваться.

Для намотки каждой пары обмоток по 25 Вольт на челнок были параллельно уложены сразу два провода (для 2х обмоток). После намотки, конец первой обмотки соединен с началом второй - получились две вторичные обмотки для двуполярного выпрямителя с соединением посередине.

После намотки каждой из пар вторичных обмоток для питания схем УМЗЧ, они были заизолированы тонкой фторопластовой лентой.

Таким образом были намотаны 6 вторичных обмоток: четыре для питания УМЗЧ и еще две для блоков питания остальной электроники.

Схема выпрямителей и стабилизаторов напряжения

Ниже приведена принципиальная схема блока питания для моего самодельного усилителя мощности.

Рис. 2. Принципиальная схема источника питания для самодельного усилителя мощности НЧ.

Для питания схем усилителей мощности НЧ используются два двуполярных выпрямителя - А1.1и А1.2. Остальные электронные блоки усилителя будут питаться от стабилизаторов напряжения А2.1 и А2.2.

Резисторы R1 и R2 нужны для разрядки электролитических конденсаторов, в момент когда линии питания отключены от схем усилителей мощности.

В моем УМЗЧ 4 канала усиления, их можно включать и выключать попарно с помощью выключателей, которые коммутируют линии питания платок УМЗЧ с помощью электромагнитных реле.

Резисторы R1 и R2 можно исключить из схемы если блок питания будет постоянно подключен к платам УМЗЧ, в таком случае электролитические емкости будут разряжаться через схему УМЗЧ.

Диоды КД213 рассчитаны на максимальный прямой ток 10А, в моем случае этого достаточно. Диодный мост D5 рассчитан на ток не менее 2-3А,собрал его из 4х диодов. С5 и С6 - емкости, каждая из которых состоит из двух конденсаторов по 10 000 мкФ на 63В.

Рис. 3. Принципиальные схемы стабилизаторов постоянного напряжения на микросхемах L7805, L7812, LM317.

Расшифровка названий на схеме:

  • STAB - стабилизатор напряжения без регулировки, ток не более 1А;
  • STAB+REG - стабилизатор напряжения с регулировкой, ток не более 1А;
  • STAB+POW - регулируемый стабилизатор напряжения, ток примерно 2-3А.

При использовании микросхем LM317, 7805 и 7812 выходное напряжение стабилизатора можно рассчитать по упрощенной формуле:

Uвых = Vxx * (1 + R2/R1)

Vxx для микросхем имеет следующие значения:

  • LM317 - 1,25;
  • 7805 - 5;
  • 7812 - 12.

Пример расчета для LM317: R1=240R, R2=1200R, Uвых = 1,25*(1+1200/240) = 7,5V.

Конструкция

Вот как планировалось использовать напряжения от блока питания:

  • +36В, -36В - усилители мощности на TDA7250
  • 12В - электронные регуляторы громкости, стерео-процессоры, индикаторы выходной мощности , схемы термоконтроля, вентиляторы, подсветка;
  • 5В - индикаторы температуры, микроконтроллер, панель цифрового управления.

Микросхемы и транзисторы стабилизаторов напряжения были закреплены на небольших радиаторах, которые я извлек из нерабочих компьютерных блоков питания. Корпуса крепились к радиаторам через изолирующие прокладки.

Печатная плата была изготовлена из двух частей, каждая из которых содержит двуполярный выпрямитель для схемы УМЗЧ и нужный набор стабилизаторов напряжения.

Рис. 4. Одна половинка платы источника питания.

Рис. 5. Другая половинка платы источника питания.

Рис. 6. Готовые компоненты блока питания для самодельного усилителя мощности.

Позже, при отладке я пришел к выводу что гораздо удобнее было бы изготовить стабилизаторы напряжений на отдельных платах. Тем не менее, вариант "все на одной плате" тоже не плох и по своему удобен.

Также выпрямитель для УМЗЧ (схема на рисунке 2) можно собрать навесным монтажом, а схемы стабилизаторов (рисунок 3) в нужном количестве - на отдельных печатных платах.

Соединение электронных компонентов выпрямителя показано на рисунке 7.

Рис. 7. Схема соединений для сборки двуполярного выпрямителя -36В+36В с использованием навесного монтажа.

Соединения нужно выполнять используя толстые изолированные медные проводники.

Диодный мост с конденсаторами на 1000pF можно разместить на радиаторе отдельно. Монтаж мощных диодов КД213 (таблетки) на один общий радиатор нужно выполнять через изоляционные термо-прокладки (терморезина или слюда), поскольку один из выводов диода имеет контакт с его металлической подкладкой!

Для схемы фильтрации (электролитические конденсаторы по 10000мкФ, резисторы и керамические конденсаторы 0,1-0,33мкФ) можно на скорую руку собрать небольшую панель - печатную плату (рисунок 8).

Рис. 8. Пример панели с прорезями из стеклотекстолита для монтажа сглаживающих фильтров выпрямителя.

Для изготовления такой панели понадобится прямоугольный кусочек стеклотекстолита. С помощью самодельного резака (рисунок 9), изготовленного из ножовочного полотна по металлу, прорезаем медную фольгу вдоль по всей длине, потом одну из получившихся частей разрезаем перпендикулярно пополам.

Рис. 9. Самодельный резак из ножовочного полотна, изготовленный на точильном станке.

После этого намечаем и сверлим отверстия для деталей и крепления, зачищаем тоненькой наждачной бумагой медную поверхность и лудим ее с помощью флюса и припоя. Впаиваем детали и подключаем к схеме.

Заключение

Вот такой, не сложный блок питания был изготовлен для будущего самодельного усилителя мощности звуковой частоты. Останется дополнить его схемой плавного включения (Soft start) и ждущего режима.

UPD : Юрий Глушнев прислал печатную плату для сборки двух стабилизаторов с напряжениями +22В и +12В. На ней собраны две схемы STAB+POW (рис. 3) на микросхемах LM317, 7812 и транзисторах TIP42.

Рис. 10. Печатная плата стабилизаторов напряжения на +22В и +12В.

Скачать - (63 КБ).

Еще одна печатная плата, разработанная под схему регулируемого стабилизатора напряжения STAB+REG на основе LM317:

Рис. 11. Печатная плата для регулируемого стабилизатора напряжения на основе микросхемы LM317.

Схема относительно просто и представляет собой двухполярный стабилизированный блок питания. Плечи блока питания зеркальны, поэтому схемы абсолютно симметрична.

Технические характеристики блока питания:
Номинальное входное напряжение: ~18...22В
Максимальное входное напряжение: ~28В (ограничено напряжение конденсаторов)
Максимальное входное напряжение (теоретически): ~70В (ограничено максимальным напряжением выходных транзисторов)
Диапазон выходных напряжений (при ~20В на входе): 12...16В
Номинальный выходной ток (при выходном напряжении 15В): 200мА
Максимальный выходной ток (при выходном напряжении 15В): 300мА
Пульсации напряжения питания (при номинальном выходном токе и напряжении 15В): 1,8мВ
Пульсации напряжения питания (при максимальном выходном токе и напряжении 15В): 3,3мВ

Данный блок питания можно использовать для питания предварительных усилителей. БП обеспечивает довольно низкий уровень пульсаций напряжения питания, при довольно большом (для предварительных усилителей) токе.

В качестве аналогов транзисторов MPSA42/92 можно применить транзисторы KSP42/92 или 2N5551/5401. Не забывайте сверять цоколевку.
Транзисторы BD139/BD140 можно заменить на BD135/136 или на другие транзисторы с аналогичными параметрами, опять же про цоколевку не забываем.

Транзисторы VT1 и VT6 должны быть установлены на теплоотводе, место для которого предусмотрено на печатной плате.

В качестве стабилитронов VD2 и VD3 можно применять любые стабилитроны на напряжение 12В.

Очень часто бывает что у радиолюбителя есть трансформатор, но только с одной обмоткой, а необходимо получить на выходе двухполярное напряжение. Именно для этих целей можно применить следующую схему:

Схема отличается своей простотой и универсальностью. На вход схемы можно подавать переменное напряжение в широком диапазоне, ограниченном только лишь допустимым напряжением диодов моста, допустимым напряжением конденсаторов питания и напряжением КЭ транзисторов. Выходное напряжение каждого из плеч будет равно половине общего напряжения питания или (Uвх*1,41)/2, например: при входном переменном напряжении 20В, выходное напряжение одного плеча будет равно (20*1,41)/2=14В.

В качестве транзисторов VT1 и VT2 можно применять ЛЮБЫЕ комплементарные транзисторы, следует только не забывать о цоколевке. Хорошими вариантами замены могут быть MPSA42/92, KSP42/92, BC546/556, КТ3102/3107 и так далее. Следует так же учитывать при замене транзисторов на аналоги их максимальное допустимое напряжение КЭ, оно должно быть не менее выходного напряжения плеча.

В своей практике для питания УМЗЧ я люблю применять для питания УМЗЧ трансформаторы с 4мя одинаковыми вторичными обмотками, в частности трансформатор ТА196, ТА163 и аналогичные. При использовании таких трансформаторов удобно использовать в качестве выпрямителя не мостовую, а двухполупериодовую полу-мостовую схему. Схема самого блока питания представлена ниже:

Для данной схемы можно применять не только трансформаторы серии ТА, ТАН, ТПП, ТН, но и любые другие трансформаторы с 4мя одинаковыми по напряжению обмотками.

На основе трансформатор ТА196 или других трансформаторов с 4мя вторичными обмотками можно организовать следующую схему:

Напряжение +/-40В (или другое, в зависимости от напряжения на обмотках вашего трансформатора) используется для питания усилителя мощности. Шины +/-15В можно использовать для питания предусилителя и входного буфера. Шину +12В можно использовать для вспомогательных нужд, например: для питания вентилятора, защиты или других не требовательных к качеству питания устройств.

В качестве стабилитрона 1N4742 можно применять любой другой на напряжение 12В, вместо 1N4728 - на напряжение 3,3В.

Вместо транзисторов BD139/140 можно использовать любую другую комплементарную пару транзисторов средней мощности на ток 1-2А. Транзисторы VT1, VT2 и VT3 необходимо устанавливать на радиатор.

Нумерация выводов соответствует нумерации выводов трансформатора ТА196 и аналогичных.

Фотографии некоторых из представленных блоков питания.

Ко всем блокам питания прилагаются проверенные 100% рабочие печатные платы.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Схема 1: Маломощный стабилизированный блок питания для предусилителей
VT1 Биполярный транзистор

BD139

1 Аналог:BD135 В блокнот
VT6 Биполярный транзистор

BD140

1 Аналог:BD136 В блокнот
VT2, VT3 Биполярный транзистор

MPSA42

2 Аналог:KSP42, 2N5551 В блокнот
VDS1, VDS2 Выпрямительный диод

1N4007

8 В блокнот
VT4, VT5 Биполярный транзистор

MPSA92

2 Аналог:KSP92, 2N5401 В блокнот
VD1, VD4 Выпрямительный диод

1N4148

2 В блокнот
VD2, VD3 Стабилитрон

1N4742

2 Любые стабилитроны на напряжение 12В В блокнот
C1, C6, C15, C18 Конденсатор 2.2 мкФ 4 Керамика В блокнот
C2-C5, C16, C17, C19, C20 Конденсатор 1000 мкФ 8 Электролит на 50В В блокнот
C7, C9, C21, C23 Конденсатор 100 мкФ 4 Электролит на 50В В блокнот
C8, C10, C22, C24 Конденсатор 100 нФ 4 Керамика В блокнот
C11, C14 Конденсатор 220 пФ 2 Керамика В блокнот
C12, C13 Конденсатор 1 мкФ 2 Электролит на 50В или керамика В блокнот
R1, R12 Резистор

10 Ом

2 В блокнот
R2, R10 Резистор

10 кОм

2 В блокнот
R3, R11 Резистор

33 кОм

2 В блокнот
R4, R9 Резистор

4.7 кОм

2 В блокнот
R5, R7 Резистор

18 кОм

2 В блокнот
R6, R8 Резистор

1 кОм

2 В блокнот
Схема 2: Маломощный блок питания с преобразованием однополярного напряжения в двухполярное
VT1 Биполярный транзистор

2N5551

1 Аналог:KSP42, MPSA42 В блокнот
VT2 Биполярный транзистор

2N5401

1 Аналог:KSP92, MPSA92 В блокнот
VDS1 Выпрямительный диод

1N4007

4 В блокнот
VD1, VD2 Выпрямительный диод

1N4148

2 В блокнот
C1-C4, C6, C7 Конденсатор 2200 мкФ 6 Рабочее напряжение в зависимости от входного В блокнот
C5, C8 Конденсатор 100 нФ 2 В блокнот
R1, R2 Резистор

3.3 кОм

2 В блокнот
Схема 3: Мощный двухполярный блок питания с полу-мостовым выпрямлением
VD1-VD4 Выпрямительный диод

FR607

4 В блокнот
C1, C5 Конденсатор 15000 мкФ 2 Электролит на 50В В блокнот
C2, C3, C7, C8 Конденсатор 1000 мкФ 4 Электролит на 50В В блокнот
C4, C6 Конденсатор 1 мкФ 2 В блокнот
F1-F4 Предохранитель 5 А 4 В блокнот
Схема 4: Мощный блок питания с полу-мостовым выпрямлением
VT1, VT3 Биполярный транзистор

BD139

2 Аналог:BD135 В блокнот
VT2 Биполярный транзистор

BD140

1 Аналог:BD136

Импульсный блок питания, обеспечивающий двухполярное напряжение +/-50В мощностью до 300 Вт, предназначен для применения , либо лабораторных БП повышенной мощности (). Эта относительно простая схема импульсного БП собрана в основном из радиоэлементов взятых из старых блоков питания AT/ATX.

Принципиальная схема преобразователя 220/2х50В


Схема самодельного импульсного БП для УМЗЧ

Трансформатор инвертора был намотан на ферритовом сердечнике ETD39. Моточные данные практически не отличаются, только выходные обмотки немного домотаны под увеличение вольтажа. Транзисторы ключевые — мощные IRFP450. Драйвер — популярная микросхема TL494. Питание осуществляется через специальный стабилизатор. В нём резистор пусковой с выпрямленным напряжением сети заряжает конденсатор питания, на котором, когда напряжение достигнет порога, включится стабилизатор, запустив драйвер. Он будет питаться только в моменты накопления энергии на конденсаторе, а после запуска преобразователя, питание драйвера возьмет на себя дополнительная обмотка трансформатора. Принцип работы такого варианта запуска известен давно и используется в популярной м/с UC384x.


Печатная плата

Силовой каскад

Еще одна особенность схемопостроения БП — управление полевыми транзисторами. Тут нижний по схеме IRFP450 управляется прямо с выхода драйвера, а верхний с помощью небольшого трансформатора.

Кроме того, система была оснащена защитой по току, отслеживая ток нижнего полевика, используя его сопротивление Rdson .

Результаты испытания БП


Готовый блок питания — плата с деталями

На практике, удалось получить около 100-150 выходной мощности на 4 омных АС. Напряжение +/-50В выставляется резистором P1 10к. Конечно оно может принимать любые значения, в зависимости от применяемой схемы УНЧ. В настоящее время система работает в составе .

Импульсный блок питания для УНЧ сконструирован для обеспечения напряжением питания двух канальный УМЗЧ. БП рассчитан на работу усилителя с выходной мощностью 200 Вт на каждый канал. Данное устройство состоит из двух печатных плат. На одной плате реализован фильтр сетевого напряжения, электромагнитное реле, трансформатор, диодный мост с фильтрующим конденсатором 1000 мкФ х 25v в его цепи. На другой плате собран модуль управления, трансформатор выпрямителя, а также в цепи фильтра конденсаторы и дроссели.

Биполярные транзисторы КТ626, а также мощные 2SK1120 MOSFET либо КП707В2 должны быть установлены на радиаторах с достаточной площадью рассеивания тепла. Наиболее эффективными радиаторами охлаждения являются теплоотводы из толстого алюминия, прошедшие фрезерную обработку. Их эффективность заключается в том, что помимо охлаждения электронных компонентов, они еще являются боковыми элементами корпуса усилителя. Модуль управления мощными выходными ключами смонтирован на небольшой самостоятельной плате, которая в свою очередь вмонтирована в модуль выпрямителя.

Модернизация ИБП

Чтобы обеспечить более корректную и надежную работу конструкции, импульсный блок питания для УНЧ был несколько модернизирован. В частности во вторичных обмотках трансформатора были установлены шунты в виде подавляющей помехи RC-цепи. Также была увеличена емкость фильтрующих конденсаторов до 10000 мкФ х 50v и зашунтированны конденсаторами 3,3 мкф 63v. Которые имеют очень малые потери и высокое сопротивление изоляции. Защита на входе не была задействована, но в случае необходимости ее можно применить в качестве защиты от пикового тока. Для этого нужно подать сигнал на вход из цепи шунта либо от трансформатора по току.

Предупреждение

Особое внимание! Все силовые тракты данного блока питания, за исключением вторичных цепей, находятся по высоким потенциалом сетевого напряжения, представляющего опасность для жизни! В процессе налаживания конструкции необходимо соблюдать максимально возможную осторожность. Желательно при настроечных работах, устройство подключить к сети через разделительный трансформатор.

Перед тем как впервые запустить импульсный блок питания, предохранитель на 2А в цепи напряжения 320v устанавливать пока не нужно. Вначале нужно произвести отладку схемы управления, а уже потом на место предохранителя 2А устанавливается лампа накаливания 220v мощностью 60 Вт. Но наиболее эффективный способ, при котором гарантируется целостность транзисторов — это включить устройство через понижающий напряжение трансформатор. Только когда полностью будет выполнены наладочные работы, тогда предохранитель ставится на место. Теперь импульсный блок питания можно испытать с нагрузкой.


На снимке: модуль инвертора, выпрямителя и цепи фильтров


На снимке: модуль фильтра сетевого напряжения и выпрямителя


На снимке: компоновка силовых ключей и диодов

Трансформатор

Трансформатор Т1 намотан на трех кольцах диаметром 45 мм из феррита 2000НМ1. Первичная обмотка содержит 2×46 витков изолированного провода 0,75 мм2 (мотается сразу двумя проводами). Вторичная обмотка намотана косой из 16 проводов диаметром 0,8 мм. Она содержит шесть витков, после намотки она делится на две группы, начала одной группы соединяются с конном другой. Дроссели DB3 и DR2 намотаны на ферритовом стержне 8 мм и выполнены проводом D=1,2 мм.

Принципиальная схема сетевого импульсного источника питания для УНЧ, выходное напряжение +-25В при токе до 4,5А (примерно 200Вт). Схема собрана на микросхеме IR2153 и транзисторах IRF740. Приведены полезные советы по сборке и наладке устройства.

Хочу предложить небольшой обзор по данной схеме. Как-то была нужда собрать человеку простенький УНЧ, был найден корпус от старого предусилителя "радиотехника".

Места в корпусе много, но уместить сетевой трансформатор не получилось, корпус оказался по высоте маловат. Было решено собрать импульсный блок питания на микросхеме ir2153, как раз одна валялась без дела.

Принципиальная схема

Изначально за основу была взята схема с - настоятельно рекомендую не собирать так как там предложено, иначе можно устроить пожар или взрыв, схема с фатальной ошибкой и не одной.

Рис. 1. Схема импульсного блока питания, взятая за основу.

Рис. 2. Схема импульсного блока питания для УМЗЧ мощностью до 200Вт.

В первой схеме основная ошибка - нет разделительного конденсатора между полевыми транзисторами и трансформатором, без этого конденсатора транзисторы сразу же взорвутся при включении, или через пару минут как раскалятся...

У микросхемы IR2153 первый вывод - это плюс питания, поскольку напряжение на выводе 1 микросхемы в пределах 16-18 вольт то конденсатор должен быть на порядок выше по напряжению, а не впритык как указано на первоначальной схеме - на 16В. Можно установить конденсатор на напряжение 25В, я поставил на 35В.

Идем дальше, запитывать микросхему так как указано на первоначальной схеме через диод и резистор в 18К, нельзя!! Посмотрите как запитывается микросхемы IR2153 у меня (рисунок 2), а не непосредственно от переменки 220вольт (рисунок 1).

В схеме на рисунке 1 скачек напряжения в сети сразу же приведет к сгоранию микросхемы, хорошо если просто работать все перестанет, а так опять же взорвутся транзисторы.

Вот эти три ошибки на схеме с рисунка 1 могут привести к очень печальным последствиям!

Детали и конструкция

Дроссель фильтра по питанию 220 Вольт (Др1) взят из импульсного БП от телевизора, подойдет любой с учетом того какую мощность желаете получить... Варистор - любой на 10 ом, только не от зарядки для телефона и подобных маломощных импульсных БП.

Индуктивность по 25 Вольтам (L) взята от компьютерного БП на 450ватт, лишние обмотки были смотаны - оставляем только те что намотаны толстым проводом.

Высокочастотный трансформатор Tr1 взят оттуда же, подробно остановлюсь на его намотке с нуля. Разобрать такой трансформатор не расколов феррит достаточно сложно. Чтобы упростить задачу, нужно положить его на плиту и нагреть до сотни градусов, иными словами как только капелька воды на феррите будет кипеть - значит можно разбирать.

При таком нагреве, клей становится мягким и половинки феррита легко вытаскиваются из каркаса с обмоткой. При намотке трансформаторов в импульсных схемах рекомендуют мотать обмотки несколькими проводами - до 8 штук одновременно.

Делать так совсем не обязательно, первичную обмотку I мотал одним эмалированным медным проводом диаметром 0,45 мм - 49 витков. Вторичные обмотки II и III мотал двумя проводами диаметром 0,8 мм - по 8 витков в каждой.

Диоды выпрямителя ставим быстродействующие - из отечественных подойдут КД213 или КД212. У последних ток нагрузки по справочнику - 1А, а у КД213 - 10А. Подойдут диоды с граничной рабочей частотой 100кгц.

Вместо транзистора IRF740 можно поставить IRF840 и им подобные. Радиатор под транзисторы можно поставить в два раза меньше, при полной длительной нагрузке транзисторы греются не очень сильно - на ощупь градусов 45. Транзисторы обязательно нужно ставить на радиатор через изолирующие прокладки.

Вместо диодов RL205 можно поставить любой диодный мост с максимальным постоянным обратным напряжением 600В и максимальным постоянным прямым током 6А.

Переходная емкость (0,1мкФ) между транзисторами и трансформатором должна быть обязательно на напряжение 630В!

С указанными номиналами данная схема обеспечивает выходную мощность примерно 200 Вт при токе до 4,5А.

Печатку к схеме БП не делал - сразу рисовал на текстолите. У каждого детали и их варианты расположения могут быть разные. Схема простая и нарисовать свою печатку не составит большого труда.

Вот что получилось у меня:

Рис. 3. План моей печатной платы для импульсного сетевого блока питания.

Как видно из наброска, вместо разделительного конденсатора между транзисторами и трансформатором у меня установлены три штуки. Пришлось так поступить поскольку как не было одного на нужное напряжение, в итоге собрал из разных конденсаторов с общей емкостью в 0,5мкФ.

Самый идеальный вариант будет - 1мкФ на 630В. Но все работает вполне нормально и с емкостью на 0,1мкФ и с емкостью на 0,5мкФ.

Рис. 4. Готовая печатная плата для импульсного источника питания (вид со стороны соединений).

Рис. 5. Готовая плата импульсного источника питания (вид со стороны деталей).

Рис. 6. Самодельный сетевой импульсный блок питания для УМЗЧ.

Рис. 7. Внешний вид сетевого импульсного БП для усилителя мощности НЧ.

Налаживание

После сборки схемы, первое включение делаем через лампочку на 220В 60Вт, включенную последовательно с блоком питания.

Если при сборке не было сделано ошибок и замыканий, то при включении лампочка должна кратковременно вспыхнуть и потухнуть - это говорит о том, что все собрано правильно и КЗ в схеме нет.

Можно на низкую сторону в качестве нагрузки включить лампу на подходящее напряжение и дать поработать схеме минут пять. Если ничего не задымилось, то можно убирать лампу на 220 и пользоваться готовым БП.

Если же лампа включенная в разрыв питания 220В при первом включении горит и не тухнет - значит в схеме есть неисправность.

Рис. 8. Импульсный блок питания установлен в корпус с усилителем НЧ.

Рис. 9. Плата УНЧ и блока питания к нему в корпусе от предусилителя Радиотехника (фронтальный вид).

Рис. 10. Плата УНЧ и блока питания к нему в корпусе от предусилителя Радиотехника (тыловой вид).

В качестве дополнения: схема УНЧ взята из .

Рис. 11. Схема УНЧ с выходной мощностью 60Вт при нагрузке 4 Ома и питании +-28В.

Литература:

  1. radiostroi.ru/pitan776/57-impblokpitkomp
  2. А. Агеев - Усилительный блок любительского радиокомплекса. Журнал Радио за 1982 год, номер 8.