Активный щуп для осциллографа. Делительный щуп с развязкой для осциллографа Активный пробник для осциллографа

Активный Щуп

См. подробную статью в ВРЛ №95 стр. 12

Активные щупы с малой входной ёмкостью. И. Шиянов.

________________________________________________________________________

http://nowradio. *****/pribory%20dly%20nastroyki%20KV-UKV%20apparatury. htm

http://*****/forum/download/file. php? id=16793

Налаживание радиоприемных устройств часто требует проверки гетеродинов измерения параметров генерируемою им ВЧ-напряжения. К сожалению, сделать это непосредственно с помощью ВЧ - осциллографа или милливольтметра бывает затруднительно. Очень большое влияние из работу микромощного генератора (гетеродина) оказывает входная емкость прибора, входное сопротивление. Например, вход популярного осциллографа С1-65 емкостью 30 pF и сопротивлением 1М может не только исказить результаты измерения, но даже сорвать генерацию гетеродина. А тут еще и коаксиальный кабель с волновым сопротивлением 50 Ом. Конечно, можно подключить вход через конденсатор 1 pF, но это может очень сильно исказить результат измерения (уровень ВЧ-напряжения достигший входа измерительного прибора может быть и 100 раз и более заниженным). Лучше всего пользоваться активным щупом, представляющим собой истоковый повторитель на высокочастотном полевом транзисторе имеющим входную емкость менее 1 pF, и входном сопротивлением более 10 МОм при выходном сопротивлении 50 Ом. Такой щуп, выполненный в виде отдельной экранированной коробки можно расположить в непосредственной близости от точки измерения, соединить с ней кратчайшими проводниками, полностью исключив влияние волнового сопротивления кабеля емкости прибора и кабеля входного сопротивления прибора на результат измерения. Более того, сам измерительный прибор может быть расположен на значительном расстоянии от точки измерения (можно использовать очень длинный соединительный кабель).

Принципиальная схема активного щупа на полевом транзисторе BF998 показана на рисунке. На схеме транзистор показан в корпусе так чтобы была понята его цоколёвка. Входная емкость щупа примерно 0,7 pF она образована тремя последовательно включенными конденсаторами С1-С3. Входное сопротивление 10 мегаом. Измеряемое ВЧ напряжение поступает на первый затвор транзистора. Напряжение смещения на этом затворе равно половине напряжения питания и создано резистивным делителем R2-R3. На затвор напряжение смещение подается через резистор R1 сопротивлением 10 Мом. Входная емкость транзистора BF998 равна 2,1 pF, поэтому напряжение, полученное в результате измерения нужно умножать на 3. Нагрузкой является резистор R4 его сопротивление должно быть таким как волновое сопротивление кабеля. Щуп работает в частотном диапазоне от 100 kHz до 1 GHz с неравномерностью коэффициента передачи по напряжению не более 7 5dB. На частотах более 1 GHz погрешность значительно возрастает. Источником питания служит сетевой адаптер от телеигровой приставки типа «Денди» (выходное постоянное нестабильное напряжение 8-11V) Напряжение стабилизируется на уровне 5V интегральным стабилизатором А1. Диод VD1 служит для защиты от ошибочного неправильного подключения источника. Питать щуп можно и от лабораторного источника напряжением 8…20V. Конструктивно щуп выполнен в экранированном корпусе неисправного всеволнового тюнера телевизора «LG» Монтаж печатно-объемным используя демонтированную плату данного тюнера. Монтаж первого затвора полевого транзистора на R1 и конденсаторы С1-С3 нужно сделать «на воздухе», чтобы исключить влияние емкости печатной платы и экранированного корпуса на входную цепь. Вход - два монтажных провода длиной не более 10 см. Провод, соединенный с С1 не должен соприкасаться изоляцией с платой или экраном корпуса.

Для питания 5V лучше использовать BF 1005 или BF 1012 S есть в Платане.

Радиоконструктор №12 2007г

Активный Щуп Осциллографа

Журнал "Радио", номер 6, 1999г.

http://www. *****/literature/radio/199906/p28_29.html

Широкополосные усилители с высоким входным сопротивлением, малой входной емкостью и низким выходным сопротивлением используются в различных устройствах. Одно из применений - входные щупы для осциллографов и другой измерительной аппаратуры. Как показано в этой статье, современные ОУ фирмы Analog Device позволяют решить эту задачу простыми средствами.

Осциллограф является одним из наиболее универсальных приборов, позволяющих измерять самые различные параметры электрического сигнала, а зачастую и значительно упрощать процедуру настройки электронных устройств. В некоторых случаях он просто незаменим. Однако многим знакома ситуация, когда подключение осциллографа к настраиваемому устройству приводит к нарушению его режимов. Виной тому в первую очередь служат вносимые в исследуемую цепь емкость и сопротивление входа осциллографа и его соединительного кабеля.

Большинство осциллографов, используемых радиолюбителями, имеют высокое входное сопротивление (1 МОм) и входную емкость 5...20 пФ. В сочетании с соединительным экранированным входным кабелем длиной около метра суммарная емкость возрастает до 100 пФ и более. Для устройств, работающих на частотах выше 100 кГц, такая емкость может оказать существенное влияние на результаты измерений.

Для устранения этого недостатка радиолюбители пользуются неэкранированным проводом (если уровень сигнала достаточно большой) или специальным активным щупом, в состав которого входит усилитель с высоким входным сопротивлением, выполненный, как правило, на полевых транзисторах . Применение такого щупа значительно снижает величину вносимой в устройство емкости. Однако недостатками некоторых из них являются низкий коэффициент передачи или наличие на выходе сдвига уровня, затрудняющего измерение постоянного напряжения. Кроме того, они имеют узкий диапазон рабочих частот (до 5 МГц), что также ограничивает их применение и требует коротких соединительных кабелей. Несколько лучшие параметры имеет щуп, описанный в . Следует отметить, что все эти щупы могут эффективно работать и с осциллографами, имеющими высокое входное сопротивление.

В настоящее время все большее распространение получают широкополосные осциллографы с диапазоном рабочих частот до 100 МГц и выше, имеющие низкое входное сопротивление - 50 Ом, поэтому их подключение к настраиваемому устройству зачастую становится практически невозможным. Не все из них комплектуются активными щупами, а применение резистивных делителей приводит к заметному снижению чувствительности.

Активный щуп, описание которого предлагается вниманию читателей, свободен от указанных недостатков. Он работает с различными осциллографами, входное сопротивление которых может быть низкоомным - 50 Ом или высокоомным - до 1 МОм, имеет диапазон рабочих частот 0...80 МГц и достаточно высокое входное сопротивление на низких частотах - 100 кОм. Его коэффициент передачи - 1 или 10, т. е. он не только не ослабляет, но и усиливает сигнал. К достоинствам щупа можно отнести и его небольшие габариты.

Таких параметров удалось достигнуть за счет применения современного быстродействующего ОУ фирмы Analog Devices. В частности, в данном щупе использован ОУ AD812AN (Чип – Дип – 180р Платан – 190р), который имеет следующие основные характеристики:

Верхняя рабочая частота - не менее 100 МГц; входное сопротивление - 15 МОм при входной емкости 1,7 пФ; входное напряжение - до + 13,5 В, а скорость нарастания выходного напряжения - 1600 В/мкс; выходной ток (при выходном сопротивлении 15 Ом) - до 50 мА; потребляемый ток в отсутствии входного сигнала - 6 мА.

Кроме того, ОУ имеет низкий уровень гармоник (-90 дБ на частоте 1 МГц и нагрузке 1 кОм) и малый уровень шума (3,5 нВ/^Гц), защиту от К3 (ток ограничен до 100 мА), рассеиваемая небольшим корпусом мощность достаточно велика - 1 Вт. К этому следует добавить, что цена микросхемы, содержащей два ОУ с такими параметрами, относительно невысока ($3...4).

Схема активного щупа приведена на рис. 1. В основном она соответствует стандартной схеме включения ОУ. Коэффициент передачи КU изменяется переключением SA1 элементов цепи обратной связи и имеет два значения: 1 и 10. Переключателем SA2 выбирают режим работы: с "закрытым" входом, когда на входе включен конденсатор С1 и постоянная составляющая напряжения на вход не проходит, или с "открытым" входом, когда она проходит.

Зарядные устройства" href="/text/category/zaryadnie_ustrojstva/" rel="bookmark">блок питания с выходным напряжением %12...15 В. Надо заметить, что потребляемый ток при отсутствии сигнала составляет 10...15 мА, при работе на низкоомную нагрузку при подаче сигнала ток может возрастать до 100 мА.

Литература

1. Гришин А. Активный щуп для осциллографа. - Радио, 1988, # 12, с. 45.

2. Иванов Б. Осциллограф - ваш помощник (активный щуп). - Радио, 1989, # 11, с. 80.

3. Турчинский Д. Активный щуп к осциллографу. - Радио, 1998, # 6, с 38.

Осциллографический ВЧ пробник с Свх = 0.5 пф

http://www. *****/ot07_19.htm

При осциллографических измерениях в высокочастотных устройствах входная емкость делителя может вносить значительные искажения в настраиваемый узел (например, при подключении пробника к контуру ВЧ генератора и т. п.). Делители с коэффициентом 1:1 имеют входную емкость порядка 100 пф и более (емкость кабеля плюс входная емкость осциллографа), что существенно ограничивает их частотный диапазон. В то же время стандартные пассивные делители 1:10 с входной емкостью 12 – 17 пф снижают чувствительность осциллографа до 50 мВ на деление (при максимальной чувствительности по входу равной 5 мВ / деление, типичной для большинства промышленных осциллографов), а также имеют все еще слишком большую входную емкость для проведения неискажающих измерений в ВЧ цепях, где емкости контуров могут иметь такое же значение.

Данная проблема решается использованием для измерений специальных активных пробников, выпускаемых для этой цели (например, фирмой Tektronix). Однако, эти устройства довольно трудно найти и их цена (от $150 и выше) сопоставима с ценой хорошего б/у осциллографа. В то же время не представляет большой сложности самостоятельно изготовить простой активный осциллографический пробник с малой входной емкостью, что и было сделано автором.

Активный осциллографический пробник предназначен для измерений переменных напряжений в низковольтных ВЧ схемах и имеет следующие характеристики:

    Диапазон измеряемых амплитудных значений сигнала – от 10 мВ до 10 В Частотная характеристика – линейна от 10 КГц до 100 МГц при малом сигнале Выходной сигнал – инвертированный, с коэффициентом деления 1:2 Напряжение питания – 12 вольт (4 * CR2025) или внешний источник Входная емкость – 0.5 пф (0.25 пф с внешним делителем 1: 10) Входное сопротивление – 100 килоом Потребляемый ток – 10 мА Размеры 60 х 33 х 16 мм

Внешний вид изготовленного прибора приведен на фото.

Конструкция прибора

Принципиальная схема пробника приведена на рисунке. Прибор собран на трех малошумящих СВЧ транзисторах 2SC3356 с граничной частотой 7 ГГц. Коэффициент усиления по напряжению составляет около 23 дб. Выходной эмиттерный повторитель служит для дополнительной развязки усилителя от нагрузки и может быть исключен, если пробник будет использоваться с одним и тем же осциллографом. Цепочка из светодиода, стабилитрона на 9 вольт и резистора служит индикатором включения и пороговым индикатором напряжения батареи питания. Питающее напряжение 12 вольт необходимо и достаточно для того, чтобы получать на выходе прибора максимальное амплитудное значение измеряемого сигнала до 5 вольт, и тем самым обеспечивать максимальный динамический диапазон до 50 дб при проведении измерений с установкой коэффициента отклонения, начиная от 5 мВ на деление (чувствительность большинства осциллографов).

https://pandia.ru/text/79/067/images/image004_5.jpg" width="750" height="373 src=">


Налаживание

Этот этап работы должен быть проведен весьма тщательно для получения нужного результата.

После сборки усилителя необходимо прежде всего точно установить его рабочую точку подбором резистора на 120 килоом для получения максимальной амплитуды неискаженного сигнала на выходе. В данной схеме и при свежих элементах питания этот режим достигается при установке постоянного напряжения от +5.2 до +5.3 вольта на эмиттере второго транзистора. Рабочая точка второго эмиттерного повторителя не требует настройки при указанных номиналах резисторов. Далее следует точно подобрать значение нижнего по схеме резистора (в данном случае 20 килоом) входного делителя для получения требуемого маштаба (1: 2) передачи сигнала между входом и выходом прибора на относительно низкой частоте (порядка 100 КГц). Заметим, что входное сопротивление усилителя при указанных номиналах деталей составляет около 5 килоом (на той же частоте), так что при отсутствии указанного резистора коэффициент передачи устройства будет выше требуемого примерно на 3 дб (величина ослабления входного сигнала равняется (105 / 5) = 26 дб, в то время как общий коэффициент усиления схемы равен 23 дб, а требуемый коэффициент передачи всего устройства должен быть равен 0.5, т. е. минус 6 дб). Подбор компенсирущих емкостей (0.5 пф параллельно резистору на 100 килоом, и подстроечный конденсатор в нижней ветви входного делителя) осуществляется путем сравнения коэффициента передачи на двух частотах, например, 1 МГц и 30 МГц, и подбора емкостей до получения нужного постоянного коэффициента передачи устройства. Далее производится окончательная проверка устройства на верхней рабочей частоте, если у радиолюбителя имеется такая возможность. В заключение проверяется фактическая входная емкость пробника на высокой частоте (например, подключением его к контуру с известными параметрами работающего генератора и контролем изменения частоты выходного сигнала по цифровому частотомеру или приемнику). При правильном выполнении конструкции прибора она не должна существенно отличаться от указанного на схеме значения (суммарная входная емкость в изготовленном автором пробнике, измеренная на частоте 20 МГц, составила 0.505 пф).

Замечания

Данный пробник создавался автором для измерений в цепях синусоидальных ВЧ сигналов в контурах генераторов и усилительных каскадов транзисторных схем, и он в целом решает поставленную задачу. Именно по этой причине в пробнике и был выбрано указанное выше соотношение между всеми основными параметрами прибора – его частотным диапазоном, высокой чувствительностью, достаточно большим входным сопротивлением и минимально возможной входной емкостью измерителя, а также небольшим потребляемым током. Радиотехника – это всегда компромисс при заданных разработчиком предельных значениях параметров.

Активный щуп для С1-94.

http://*****/izmeren/369-tri-pristavki-k-s1-94.html

Алюминий" href="/text/category/alyuminij/" rel="bookmark">алюминиевый стаканчик из-под валидола. С осциллографом щуп соединяют любым высокочастотным экранированным кабелем, желательно небольшого диаметра.

При налаживании щупа сначала подбирают (если это понадобится) резистор R1, чтобы обеспечить указанный на схеме режим работы транзистора VT2. Коэффициент передачи устанавливают подбором резистора R4, а верхнюю границу полосы пропускания - подбором конденсатора С4. Нижняя граница полосы пропускания зависит от емкости конденсатора С1.

Желательно проверить амплитудно-частотную характеристику щупа. Если на ней будет обнаружен подъем иа частотах, соответствующих верхней границе полосы пропускания, придется включить последовательно с конденсатором С4 резистор сопротивлением 30Ом

Взято отсюда: http://www. *****/lcmeter3.htm

Частотометр, измеритель ёмкости и индуктивности – FCL-meter

На транзисторе VT1 собран усилитель сигнала частотометра F1. Схема особенностей не имеет за исключением резистора R8 (100 Ом), необходимого для питания выносного усилителя с малой входной ёмкостью, во многом расширяющего область применения прибора. Его схема показана на рис. 2 .

При пользовании прибором без внешнего усилителя необходимо помнить, что его вход находится под напряжением 5 Вольт, и поэтому необходим развязывающий конденсатор в сигнальной цепи.

Предделитель частотометра F2 собран по типовой для большинства подобных прескалеров схеме, лишь введены ограничительные диоды VD3, VD4. Необходимо заметить, что при отсутствии сигнала предделитель самовозбуждается на частотах около 800-850 МГц, что является типичным для высокочастотных делителей. Самовозбуждение пропадает с подачей на вход сигнала от источника с входным сопротивлением близким к 50 Ом. Сигнал с усилителя и прескалера поступает на DD2.

Выносной щуп к осциллографу.

http://forum. /index. php? showtopic=13268&st=440

На рис. 3 представлена принципиальная схема повто­рителя напряжения, выполненного в виде электронного щупа к осциллографу. Схема повторителя содержит че­тыре транзистора. Согласованная пара полевых тран­зисторов VT1, VT2 с n-каналом работает в дифферен­циальном каскаде, транзистор VT3 является источником тока для указанного каскада, а транзистор VT4 включен в схему усилителя напряжения с общим эмиттером.

Устройство работает следующим образом. Входной сигнал подается на затвор транзистораVT1. Напряже­ние, усиленное полевым транзистором VT1, поступает на базу транзистора VT4.Выходное напряжение повто­рителя снимается с коллекторной нагрузки - резистора R10.Одновременно выходное напряжение прикладыва­ется к затвору второго транзистора дифференциальной пары VT1, VT2. Глубокая отрицательная обратная связь и большое дифференциальное сопротивление источника тока обеспечивают близкий к единице коэффициент пе­редачи повторителя. Выбором тока коллектора транзи­стора VT4 (около 4 мА) снижается нелинейность повто­рителя в области высоких частот. Температурная ста­бильность устройства обеспечивается за счет глубокой отрицательной обратной связи и введения источника то­ка на транзисторе VT3.

Основные характеристики повторителя напряжения представлены на рис. 4. Кривыми 1 -4 показана ампли­тудно-частотная характеристика устройства для различ­ных значений емкости нагрузки. С увеличением емкости от 15 до 100 пФ полоса пропускания повторителя, изме­ренная на уровне 3 дБ, сужается от 25 до 10 МГц. Указанная выше емкость нагрузки складывается из емкости кабеля и входной емкости осциллографа.

Рис. 3. Вариант схемы повторителя напряжения - щупа к осцилло­графу

Необходимо иметь в виду, что современные радио­частотные кабели с полиэтиленовой изоляцией имеют по­гонную емкость, увеличивающуюся с уменьшением вол­нового сопротивления. Так, например, типичное значение погонной емкости кабеля с волновым сопротивлением 50 Ом равно ПО…125 пФ, с волновым сопротивлением 75 Ом - в пределах 60…80 пФ. У высокоомных кабелей и кабелей с полувоздушной изоляцией погонная емкость может быть ниже, однако они сравнительно малодо­ступны

https://pandia.ru/text/79/067/images/image011_6.gif" alt="589x432, 6,8Kb - 589x432, 6,8Kb" width="589" height="432">

Современные осциллографы обычно имеют несколько входов со стандартным коаксиальным (BNC) или специализированным разъемом, конструкция которого зависит, прежде всего, от полосы частот тракта вертикального отклонения . У широкополосных осциллографов входное сопротивление может выбираться равным 50 Ом для наблюдения сигналов в режиме согласования или быть большим (чаще всего, 1 МОм с параллельной емкостью в единицы-десятки пФ). При подаче сигнала непосредственно на 50-омный (или высокоомный) вход обычно реализуется стандартная чувствительность и полоса частот осциллографа. Однако, как правило, исследуемый объект располагается на некотором удалении от осциллографа и для подключения к нему последнего приходится использовать специальные согласующие устройства - пробники.

Со времен применения массовых аналоговых осциллографов с узкой полосой частот исследуемых сигналов (до десятков МГц) у большей части пользователей сохранилось этакое снисходительно-пренебрежительное отношение к применению осциллографических пробников. Нередко они используются без учета прямого назначения и ряда технических характеристик этих важных устройств. Часто при работе с одним осциллографом используются пробники от другого осциллографа. Даже примитивная коррекция пробников проводится нерегулярно.

К сожалению, такое отношение к пробникам является следствием примитивности лабораторного оборудования многих наших школ, ВУЗов и университетов. В них до сих пор можно встретить старые (порою, давно списанные) осциллографы времен СССР, метрологическое обеспечение которых давно уже не проводится. Пробники изнашиваются намного быстрее осциллографов и, по существу, являются заменяемыми в процессе эксплуатации устройствами. Неквалифицированный ремонт пробников не гарантирует сохранение их метрологических и частотновременных параметров.

В наше время такое отношение к применению осциллографов и пробников совершенно недопустимо и свидетельствует о низкой профессиональной подготовке тех, кто работает с осциллографами по старинке. И связано это с резким улучшением метрологических, частотно-временных и иных показателей современных осциллографов и совершенствованием пробников,которые превратились в специализированные, весьма тонкие и, порою - дорогие устройства. Так, стоимость некоторых типов пробников (к счастью, далеко не всех) может достигать нескольких тысяч долларов. От пробников часто в решающей мере зависит не только погрешность измерения параметров сигнала, но и просто корректность отображения формы наблюдаемых сигналов. Фактически пробники стали неотъемлемой частью осциллографа, вынесенной за пределы его корпуса.

Чаще всего дешевые пробники входят в комплект осциллографа и производятся той же фирмой, которая выпускает осциллографы.

Но и в этом случае поставляемые с современными многоканальными осциллографами пробники нередко составляют заметную часть стоимости этих приборов. Некоторые фирмы выпускают пробники, которые могут использоваться с различными (в основном, бюджетными) осциллографами. Ниже детально рассмотрены основные виды пробников, применяемых для работы с современными (в основном, цифровыми) осциллографами.

Обычно пробники используются для реализации следующих целей:

Удаленного подключения осциллографа к объекту исследования;

Уменьшения чувствительности каналов вертикального (иногда и горизонтального) отклонения и исследования сигналов повышенного уровня (пассивные пробники);

Развязки измерительных цепей от узлов осциллографа (оптические пробники);

Большого ослабления сигнала и исследования сигналов в высоковольтных цепях(высоковольтные пробники);

Увеличения входного сопротивления и уменьшения входной емкости (компенсированные делители и пробники-повторители);

Коррекции амплитудно-частотной характеристики системы "пробник-осциллограф";

Получения осциллограмм тока (токовые пробники);

Выделения противофазных сигналов и подавления синфазных сигналов (дифференциальные пробники);

Повышения чувствительности осциллографов (активные пробники);

Специальных целей (например, согласования выходов источников широкополосных сигналов с 50-омным входом осциллографа).

Простейшим и давно применяемым типом пробников являются пассивные пробники с компенсированным делителем напряжения (рис. 1). Делитель напряжения строится на резисторах R1 и R2, причем R2 может быть просто входным сопротивлением осциллографа.

Рис. 1. Схема компенсированного делителя

Параметры делителя на постоянном токе вычисляются по формулам:

R BX = R 1 + R 2 , и К д =R 2 /(R 1 + R 2).

Например, если R2 = 1 МОм и R1 = 9 МОм, то имеем R ВХ = 10 МОм и К Д = 1/10. Таким образом, входное сопротивление увеличено в 10 раз, но в 10 раз падает и уровень напряжения, поступающего на вход осциллографа.

В общем случае (на переменном токе) для коэффициента передачи делителя можно записать выражение:

где τ 1 = R 1 C 1 и τ 2 = C 2 R 2 .

Если τ 1 = τ 2 , то значение K Д определяется из (1) как:

Таким образом, при равенстве постоянных времени τ 1 и τ 2 коэффициент передачи делителя перестает зависеть от частоты и равен его значению на постоянном токе. Такой делитель называют компенсированным. Емкость C 2 - это общая емкость кабеля, монтажа и входная емкость осциллографа. Практически, для достижения условия компенсации емкость С (или C 2) нужно подстраивать, например с помощью подстроечного конденсатора переменной емкости - триммера (рис. 2.). Регулировка выполняется специальной пластиковой отверткой, входящей в комплект аксессуаров пробников. Комплектация пробника включает в себя разные наконечники, переходники, цветные наклейки и другие полезные "мелочи".

Рис. 2. Конструкция стандартного пассивного пробника HP-9250 на основе частотно-компенсированного делителя

При компенсации искажения прямоугольного импульса (меандра), обычно генерируемого встроенным в осциллограф калибратором, отсутствуют (рис. 3). При спаде вершины импульса наблюдается недокомпенсация, а при нарастании - перекомпенсация. Характер осциллограмм при этом также показан на рис. 3 (сняты осциллографом TDS2024 с пробником P2200 ). Рекомендуется проводить компенсацию при максимально большом изображении осциллограммы соответствующего канала.

Рис. 3. Осциллограммы импульсов калибратора осциллографа Tektronix TDS2024 при разной степени компенсации (сверху вниз): нормальной компенсации, перекомпенсации и недокомпенсации

Рекомендация 1 . При работе с многоканальным осциллографом применяйте пробники индивидуально для каждого канала. Для этого пометьте (если это уже не сделано на заводе) пробники наклейками разного цвета, обычно соответствующими цветам линий осциллограмм.

Для делителя 1:10 резистор R1 должен быть равен 9R 2 . Это означает, что емкость C 1 должна быть в 9 раз меньше входной емкости C 2 . Входная емкость делителя определяется последовательным соединением С 1 и C 2:

Приближенное значение справедливо при К Д >> 1 и С 1

При К Д = 10 входная емкость делителя почти в 10 раз меньше входной емкости осциллографа. Следует помнить, что в С 2 входит не только истинная входная емкость осциллографа, но и емкость С 1 увеличивается на величину емкости монтажа. Поэтому на самом деле уменьшение входной емкости делителя по сравнению с входной емкостью осциллографа будет не столь заметным.Тем не менее, именно это и объясняет заметное уменьшение искажений фронтов импульсов при работе с делителем.

Увеличение активной составляющей входного сопротивления делителя не всегда полезно, поскольку ведет к изменению нагрузки на испытуемое устройство и получению разных результатов при отсутствии делителя и при его применении. Поэтому делители часто проектируются так, чтобы входное сопротивление осциллографа оставалось неизменным как при работе без делителя, так и при работе с ним. В этом случае делитель не увеличивает входное сопротивление осциллографа, но все же уменьшает входную емкость.

Большинство пробников позволяет увеличить максимальное исследуемое напряжение на постоянном токе и низкой частоте с десятков вольт до 500...600 В. Однако на высоких частотах реактивная мощность (и активная, выделяемая на сопротивлении потерь конденсаторов пробника) резко растет и нужно снижать максимальное напряжение на входе пробника (рис. 4). Если не учитывать это обстоятельство, то можно просто вывести пробник из строя.

Рис. 4. Зависимость максимального напряжения на входе пробника от частоты

Разновидностью пассивных пробников являются высоковольтные пробники . Обычно они имеют коэффициент деления 1/100 или 1/1000 и входное сопротивление 10 МОм или 100 МОм. Маломощные резисторы делителя пробника обычно выдерживают без пробоя напряжения до 500...600 В. Поэтому в высоковольтных пробниках резистор R1 (и конденсатор C1) приходится выполнять с применением последовательно включенных компонентов. Это увеличивает размеры измерительной головки пробника.

Вид высоковольтного пробника Tektronix P6015A показан на рис. 5. Пробник имеет корпус с хорошей изоляцией с выступающим кольцом, предотвращающим соскальзывание пальцев к цепи, осциллограмма напряжения которой снимается. Пробник можно использовать при напряжении до 20 кВ (на постоянном токе) и до 40 кВ (при импульсах большой скважности). Частотный диапазон осциллографа с таким пробником ограничен 75 МГц, чего с избытком достаточно для измерений в высоковольтных цепях.

Рис. 5. Внешний вид высоковольтного пробника Tektronix P6015A

Рекомендация 4. При работе с высоковольтными пробниками соблюдайте максимально возможные меры предосторожности. Вначале подключите провод заземления, а лишь затем подключите иглу пробника к точке, осциллограмму напряжения на которой нужно получить. Рекомендуется закрепить пробник и вообще убрать руки от него при проведении измерений.

Высоковольтные пробники выпускаются как для цифровых, так и для аналоговых осциллографов. Например, для широкополосных аналоговых осциллографов серии ACK-7000 и АСК-8000 выпускается пробник HV-P30 с полосой частот до 50 МГц, коэффициентом деления 1/100, максимальным напряжением синусоиды (от пика до пика) 30 кВ и максимальным напряжением импульсного сигнала до 40 кВ. Входное сопротивление пробника составляет 100 МОм, входная емкость - 7 пФ, длина кабеля - 4 м, выходной разъем типа BNC. Другой пробник, HV-P60 с коэффициентом деления 1/2000, может применяться при максимальных напряжениях до 60 кВ для синусоидального и до 80 кВ - для импульсного сигналов. Входное сопротивление пробника равно 1000 МОм, входная емкость - 5 пФ. О качестве этих изделий красноречиво говорит их высокая цена.

Часто пассивные пробники используются для коррекции амплитудно-частотной характеристики осциллографов. Иногда это коррекция, рассчитанная на расширение полосы частот, но чаще решается обратная задача - сужение полосы частот для уменьшения влияния шума при наблюдении сигналов малого уровня и устранения быстрых выбросов на фронтах импульсных сигналов. Такими пробниками (P2200) комплектуются массовые осциллографы серий "Tektronix TDS1000B/2000B". Внешний вид пробника показан на рис. 6.

Рис. 6. Пассивный пробник P2200 с встроенным фильтром низких частот в положении переключателя деления напряжений 1/10

Основные параметры пробников приведены в табл. 1.

Таблица 1. Основные параметры пассивных пробников P2200

К д

R вх , МОм

С вх , пФ

f макс , МГц

U вхмакс , В

Из табл. 1 хорошо видно, что применение пробника с коэффициентом деления 1/1 целесообразно только при исследовании низкочастотных устройств, когда достаточно полосы частот до 6,5 МГц. Во всех других случаях целесообразно работать с пробником при коэффициенте деления 1/10. При этом входная емкость уменьшается со 110 пФ до примерно 15 пФ, а полоса частот расширяется с 6,5 МГц до 200 МГц. Осциллограммы меандра с частотой 10 МГц, показанные на рис. 7, получены с помощью осциллографа TDS2024В с пробниками P2200. Они хорошо иллюстрируют степень искажения осциллограмм при коэффициенте деления 1/10 и 1/1. В обоих случаях использовалось стандартное включение пробников с зацепляющейся насадкой и длинным проводом заземления (10 см) с "крокодилом". Меандр с временем нарастания 5 нс был получен от генератора Tektronix AFG3101.

Рис. 7. Осциллограммы импульсов (меандра) с частотой 10 МГц при коэффициенте деления 1/10 (верхняя осциллограмма) и 1/1 (нижняя осциллограмма)

Нетрудно заметить, что в обоих случаях осциллограммы наблюдаемого сигнала (а он у генераторов AFG3101 на частоте 10 МГц близок к идеальному и имеет гладкие вершины без намека на "звон") сильно искажены. Однако характер искажения разный. При положении делителя 1/10 форма сигнала близка к меандру и имеет фронты малой длительности, но искажена затухающими колебаниями, возникающими из-за индуктивности длинного заземляющего провода (рис. 8). А в положении делителя 1/1 затухающие колебания пропали, но явно заметно значительное возрастание постоянной времени системы "пробник-осциллограф". В результате вместо меандра наблюдаются пилообразные импульсы с экспоненциальными нарастанием и спадом.

Рис. 8. Схема включения пробника к нагрузке RL

Приведем типовые данные схемы (рис. 8): внутреннее сопротивление источника сигнала R I = 50 Ом, сопротивление нагрузки R L >>R I , входное сопротивление пробника R P = 10 МОм, входная емкость пробника C P = 15 пФ. При таких параметрах элементов схемы она вырождается в последовательный колебательный контур, содержащий сопротивление R ≈ R I , индуктивность земляного провода L ≈ L G (порядка 100-120 нГ) и емкость C ≈ C P .

Если на вход такого контура подать идеальный перепад напряжения E, то временная зависимость напряжения на C (и входе осциллографа) будет иметь вид:

где α = R/2L, и δ= √ (1/LC - R 2 /4L 2).

Расчеты показывают, что эта зависимость может иметь значительный выброс при больших L и малых R, что и наблюдается на верхней осциллограмме рис. 7. При α/δ = 1 этот выброс составляет не более 4 % от амплитуды перепада, что является вполне удовлетворительным показателем. Для этого величину L = L G надо выбирать равной:

Например, если C =15 пФ и R = 50 Ом, то L = 19 нГ Для уменьшения L до такой величины (с типовой порядка 100-120 нГ для земляного провода длиной 10 см) надо укоротить земляной (возможно и сигнальный) провод до длины менее 2 см. Для этого следует снять насадку с головки пробника и отказаться от использования стандартного земляного провода. Начало пробника в этом случае будет представлено контактной иглой и цилиндрическим земляной полоской (рис. 9) с малой индуктивностью.

Рис. 9. Головка пробника со снятым наконечником (слева) и переходник к коаксиальному разъему (справа)

Эффективность применяемых для борьбы со "звоном" мер иллюстрирует рис. 10. На нем показаны осциллограммы 10 МГц меандра при обычном включении пробника и включении со снятой насадкой и без длинного провода земли. Хорошо видно практически полное устранение явных затухающих колебательных процессов на нижней осциллограмме. Небольшие колебания на вершине связаны с волновыми процессами в соединительном коаксиальном кабеле, который в таких пробниках работает без согласования на выходе, что порождает отражения сигнала.

Рис. 10. Осциллограммы 10 МГц меандра при обычном включении пробника (верхняя осциллограмма) и включении со снятой насадкой и без длинного провода земли (нижняя осциллограмма)

Рекомендация 6 . Для получения осциллограмм с предельно малыми временами нарастания и "звоном" необходимо принять меры по предельному уменьшению индуктивности измеряемой цепи: удаляют насадку пробника и подключают пробник с помощью иглы и цилиндрической заземляющей вставки. Принимают все возможные меры по уменьшению индуктивности цепи, сигнал в которой наблюдается.

Важными параметрами системы "пробник-осциллограф" является время нарастания системы (на уровнях 0,1 и 0,9) и полоса частот или максимальная частота (на уровне спада чувствительности на 3 дБ). Если воспользоваться известным значением резонансной частоты контура

f 0 = 1/(2π√(LC))

то можно выразить значение R через резонансную частоту контура, определяющую предельную частоту тракта отклоняющей системы:

Нетрудно доказать, что время достижения напряжением u(t) значения E амплитуды перепада будет равно:

t p = 2,2RC. (7)

Это значение обычно и принимают за время установления пробника с оптимальной переходной характеристикой. Общее время нарастания осциллографа с пробником можно оценить как:

t 0 = √(t 2 осц + t 2 р) , (8)

где t осц - время нарастания осциллографа (при подаче сигнала прямо на вход соответствующего канала). Верхняя граничная частота f макс (она же и полоса частот) определяется как

f макс = 0,35/t 0 . (9)

К примеру, осциллограф, имеющий t 0 = 1 нс, имеет f макс = 350 МГц. Иногда множитель 0,35 увеличивают до 0,4...0,45, поскольку АЧХ многих современных осциллографов с f макс > 1 ГГц отличается от гауссовской, для которой характерен множитель 0,35.

Не стоит забывать о еще одном важном параметре пробников - времени задержки сигнала t з. Это время определяется, прежде всего, погонным временем задержки (на 1 м длины кабеля) и длиной кабеля. Оно обычно составляет от единиц до десятков наносекунд.

К нужным точкам исследуемых устройств пробник может подключаться с помощью различных наконечников, насадок, зацепок и "микро-крокодилов" которые часто входят в комплект аксессуаров пробника. Однако, для наиболее точных измерений, пробник необходимо подключать с помощью первичной иглы или двух игл (см. рис. 11). При разработке высокочастотных и импульсных устройств на печатной плате для этого предусматриваются специальные контактные площадки или металлизированные отверстия.

Рис. 11. Подключение пробника к контактным площадкам печатной платы исследуемого устройства

Особенно актуально стало сейчас подключение пробников к контактным площадкам миниатюрных печатных плат, гибридных и монолитных интегральных микросхем . Держать в руках пробники в этом случае неудобно, а соскальзывание иглы с контактной площадки может вызвать замыкание или даже механическое повреждение устройства. Специальные наконечники позволяют подключать пробники к выводам микросхем и контактным выводам печатных плат даже при их малых размерах (рис. 12).

Рис. 12. Специальные наконечники пробников для подключения к микросхемам и контактным выводам печатных плат

Рекомендация 8. Необходимо продумать способ подключения пробника к контрольным точкам исследуемого устройства (схемы) и фиксацию измерительной головки пробника. Непродуманное применение пробника может не только сильно исказить осциллограмму в контрольной точке, но и повредить испытуемое устройство, например, микросхему.

Конструкции пассивных пробников и приспособлений к ним (аксессуаров) постоянно совершенствуются. На рис. 13 показано начало эволюции пробников ведущей в разработке и производстве осциллографов корпорации Tektronix . Пока описанные выше пробники относились к их первому поколению - на основе стандартного 50-омного коаксиального разъема BNC (рис. 13а).

Рис. 13. Интерфейсы пробников XX века корпорации Tektronix

С ростом полосы частот пробника приходится применять улучшенные изолирующие и проводящие материалы, а также специальные цепи коррекции переходной и частотной характеристик. Кроме того, возникла необходимость передачи осциллографу данных о типе применяемых пробников о меняющихся в ходе работы коэффициентах деления.

Некоторые осциллографы, например, Tektronix TDS1000B/2000B,способны распознавать коэффициенты деления обычных пробников. Есть пробники, например, пассивные Tektronix P6105A, P6106, P6158, конструкция разъема которых предусматривает выдачу сигнала (Readout) о коэффициенте деления пробника (рис. 13б). На рис. 14 показан внешний вид одного из таких пассивных пробников P6109.

Рис. 14. Внешний вид пассивного пробника P-6109 c выводом Readout

Однако более мощные осциллографы могут работать с большим набором пробников, поэтому задача их распознавания, а также их коэффициентов деления приобрела актуальный характер. В связи с этим компанией Tektronix была создана специальная архитектура и конструкция пробников, обеспечивающая двухсторонний обмен информацией между осциллографом и пробником,необходимый не только для точной передачи преобразованных пробником сигналов и данных о пробнике на вход осциллографа, но и передачу данных от осциллографа к пробнику при дистанционном управлении устройствами.

Выпускаются пассивные, активные, дифференциальные и оптические пробники этого типа. Широкое применение нашли и пробники с интерфейсом TekProbe, созданные в 1986 г. (рис. 13в). Для съема данных об установленном коэффициенте деления используются пружинящие штыри-пины с остриями, контактирующие с контактными площадками входного разъема каналов осциллографа. Аналогичные по назначению пробники выпускаются и другими производителями осциллографов.

Особым видом пробников являются "оптические пробники". Есть два вида таких пробников: для приема оптического излучения (например, от лазерных импульсных источников излучения)и пробники, использующие оптроны (комбинацию светодиода и фотодиода) для гальванической развязки от "земли" осциллографа. Часто этого достаточно для снятия осциллограммы напряжения между двумя любыми точками устройства (схемы). На рис. 15 показан внешний вид оптических пробников Tektronix P6701B.

Рис. 15. Внешний вид оптических пробников Tektronix P6701B

Рекомендация 9 . Для измерений напряжений между двумя контрольными точками устройства (схемы) можно использовать пробники с гальванической(оптической) развязкой от земли осциллографа. Необходимо учесть, что есть альтернативный вариант таких измерений с помощью дифференциальных пробников (см. ниже). Однако они применяются при исследовании низковольтных устройств.

Часто возникает необходимость в осциллографировании не напряжений, а токов. Для этого используется включение в разрыв цепи низкоомного шунта и преобразование тока в напряжение в соответствии с формулой U = RI. Например, если чувствительность осциллографа равна 5 мВ/дел, то при сопротивлении шунта R = 1 Ом получаем чувствительность по току 5 мА/дел. Этот метод имеет целый ряд недостатков:

Шунт включается в разрыв цепи, что требует отключения устройства и проведения монтажных работ;

Прецизионный шунт является дорогим и редким изделием;

При измерении больших токов шунт надо делать очень низкоомным;

Возможен разогрев шунта;

Даже малая индуктивность шунта создает большую постоянную времени L/R, что удлиняет фронты наблюдаемых импульсов тока и ограничивает полосу наблюдаемых частот.

В связи с этим были созданы бесконтактные токовые пробники, принцип действия которых основан на регистрации магнитного поля, появляющегося вокруг проводника при пропускании через него тока (рис. 16). Для повышения чувствительности головка пробника выполняется в виде токового трансформатора, принцип действия которого хорошо известен.

Рис. 16. Принцип контроля тока в проводнике по его магнитному полю

На рис.17 показан внешний вид токового пробника TCP202 с интерфейсом TekProbe с максимальным измеряемым током (постоянным и переменным) до 15 А. Измерительная головка пробника построена по аналогии с токовыми клещами, давно применяемыми в мультиметрах с бесконтактным измерением тока с помощью токового трансформатора. Но она более миниатюрна и предназначена для измерения малых токов.

Рис. 17. Токовый пробник Tektronix TCP202 с интерфейсом TekProbe

С помощью отжима "токовых клещей" их можно разомкнуть и вставить в отверстие провод, ток в котором измеряется и наблюдается. Для увеличения чувствительности и измерения малых токов можно создать обмотку из провода, содержащую несколько витков (рис. 18). Для измерения суммарных и разностных токов возможна вставка в отверстие измерительной головки двух проводников. Значения чувствительности для того или иного способа измерений можно найти в описании пробника. При использовании специального калибратора тока погрешность измерения тока после калибровки составляет ±1% для токов от 0,05 до 5 А и ±2% для токов от 5 до 15 А.

Рис. 18. Измерительная головка пробника Tektronix TCP202

При отказе от измерения постоянного тока можно существенно расширить диапазон измеряемых токов. Tektronix, к примеру, выпускает токовые пробники A621 с диапазоном токов от 0,1 до 2000 А в диапазоне частот от 5 Гц до 50 кГц с диаметром токовых клещей 54 мм. Такие пробники используются для контроля токов в мощных энергетических установках, например подстанциях и силовых трансформаторах.

Рекомендация 10. При измерениях средних и больших токов (от единиц мА до тысяч А) разумно применять специальные бесконтактные токовые пробники на основе датчиков магнитного поля, возникающего вокруг проводника с током. Повышение чувствительности достигается созданием обмотки датчика из одного или нескольких витков. Необходимо обратить внимание на такие важные параметры токовых датчиков, как диапазон измеряемых токов, погрешность измерений и частотный диапазон (он обычно уже, чем у пробников напряжения).

Владимир Дьяконов (г. Смоленск)

Нужен был щуп для осциллографа, чтоб смотреть форму напряжения 700 вольт переменного тока. Цены в магазинах серьёзные - придется потратить кучу денег, что-то от 3000р. Поэтому и взялся за этот проект. Стоимость деталей около 200 рублей. Схема несложная и если найдёте указанные микросхемы - соберёте за пару дней.

  • Недостатки - малая частота сигналов, которые мы можно исследовать без искажений. Для прямоугольника 20 кГц будет предел. Если настроить с некоторым сдвигом фазы, то синус можно смотреть около 50 кГц.
  • Преимущества - полная гальваническая развязка до 3 кВ.

Таким образом, этот прибор отлично пойдёт для инженеров по энергетике. Конечно, не в лаборатории, а в рабочей диагностике высоковольтных линий.

Основа конструкции - гальванически изолированный усилитель ACPL-790 . Отсюда основное ограничение частот работы зонда. Усилитель питается от изолированного преобразователя напряжения. Входной сигнал (максимум 300 мВ) снимается с резисторного делителя напряжения.

В представленном экземпляре рассчитано на 2,5 кВ постоянного тока на входе. У AD620 скорость нарастания сигнала на выходе микросхемы 0,3 В/мкс.

Питание усилителя измерения также от преобразователя, обеспечивающего двухполярное напряжение ±5 В. На входе 20 резисторов в 2 полосы. При высоких напряжениях на них выделится большая мощность, при 2,5 кВ около 3 Вт.

Плата имеет размер 100x65 мм и подходит для небольшого пластикового корпуса. Производство печатной платы - китайское (по акции за 10 штук размером 100x100 меньше 10 долларов).

Калибровка : использовалось напряжение обычной 220 В сети и качественный цифровой мультиметр. Настраиваем подстроечники до тех пор, пока на экране осциллографа не получим показания Vrms , подобные данным эталонного мультиметра.

Большинство осциллографов имеют входное сопротивление 1 Мом и емкость 20 пф. С применением делителя 1Х10 сопротивление увеличивается до 10 Мом и емкость падает до нескольких пикофарад. Однако даже такие параметры могут изменить параметры измеряемой цепи выдавая недостоверные показания. Задача данного щупа внести минимальную погрешность в измеряемую цепь. Для этого сопротивление пробника должно стремиться к бесконечности, а емкость к нулю. Чтобы получить такие параметры требуется прецизионный операционный усилитель и конструктивные ухищрения, в частности игла пробника не касается платы и проходя через фторопластовую бобышку припаивается непосредственно к ножки микросхемы. В качестве операционного усилителя выбран широко распространенный CA3140. Вот интересующие нас параметры из даташита :

Поскольку проконтролировать такие высокие параметры у меня нет возможности то воспользуюсь слегка пониженными данными даташита. Тогда параметры изделия будут таковыми:

  • Входное сопротивление - 1 Том
  • Входная емкость - 5 пФ
  • Усиление - 1:10 и 1:1
  • Максимальное входное напряжение 12 вольт
  • Максимальное выходное напряжение - 8 вольт
  • Максимальная рабочая частота - 1 МГц

Схема проста как валенок, поэтому на ней не указаны блокировочные конденсаторы по питанию и синфазный дроссель на проводе питания. Подстроечные резисторы регулируют смещение по постоянному току и усиление в режиме 1:10.

Вот так выглядит готовая конструкция, на ней не допаян земляной провод с крокодилом на конце.

Хорошим источником фторопластовых бобышек служат разъемы SMA, в данной конструкции он впаян целиком. Важным этапом является промывание платы спиртом, без этого можно забыть о сверхвысоких сопротивлениях, а иногда и вовсе получить неработоспособный прибор.

Входная емкость современных осциллографов составляет порядка 30...50 пФ. При измерениях к ней добавляется емкость соединительного кабеля, и суммарная входная емкость достигает 100...150 пФ. Это может привести к существенному искажению результатов измерений и неправильной настройке, например, фильтров-пробок выходных каскадов усилителей записи магнитофонов. Вот почему при проведении исследований в цепях, критичных к вносимой емкости измерительного прибора, необходимо применять специальные согласующие устройства, имеющие большое входное сопротивление и небольшую емкость.

Для большинства практических работ необходимы два основных вида устройств: для гармонических сигналов малой амплитуды (1...50 мВ) с коэффициентом передачи К>1 и для сигналов большой амплитуды (до 10...20 В), позволяющие передавать постоянную составляющую сигнала и имеющие коэффициент передачи К=0,2...0,5.

Широкое распространение в последние годы быстродействующих аналоговых и цифровых микросхем, работающих при сравнительно больших напряжениях (ОУ широкого применения, микросхемы серии К561-до 15 В), выявило необходимость устройства, работающего в широком диапазоне напряжений с возможностью передачи постоянной составляющей сигнала.

Схема такого устройства в виде щупа приведена на рис. 1. Он выполнен по классической схеме истокового повторителя с использованием транзистора МОП-структуры и содержит минимальное количество деталей. Диапазон рабочих частот составляет О...5 МГц. Питание осуществляется от любого источника тока напряжением 7...15 В, например, аккумуляторной батареи 7Д-0,115-У1.1 или гальванических батарей "Крона", "Корунд". Входная емкость щупа - не более 4 пФ, входное сопротивление - не менее 3 МОм. Выходное напряжение при Uвх=0 co-ставляет 2,5 В. Диапазон входных напряжений в области отрицательных значений (до отсечки) - 7 В, в области положительных значений (до начала ограничения) составляет 13 В при Uпит=9В и 26В при Uпит=15В.

Коэффициент передачи в указанном диапазоне частот составляет 0,4.

Резисторы R1 и R2 образуют входной делитель напряжения, конденсатор С1 служит для частотной компенсации.

Ввиду значительного разброса параметров конкретных экземпляров транзисторов характеристики конструкций щупов также могут отличаться в основном по напряжению отсечки и коэффициенту передачи. Для получения максимального рабочего диапазона в области отрицательных значений входных напряжений необходимо применять транзисторы с максимальным (по абсолютной величине) напряжением отсечки. Автором был применен транзистор с Uзи oтc=4,2 В. Большинство транзисторов КП305И имеют меньшее значение Uзи отс, поэтому при необходимости напряжение отсечки щупа может быть увеличено путем уменьшения коэффициента передачи входного делителя, например, увеличив сопротивление резистора R1. Впрочем, для многих измерений, где требуется настройка по максимуму или минимуму напряжения, значение напряжения отсечки щупа не является существенным, поскольку настройку можно проводить по положительной полуволне сигнала.

Щуп собран в корпусе от фломастера. Монтаж объемный, без применения дополнительных конструктивных элементов. Выводы радиоэлементов соединены непосредственно между собой. Щуп подключают к осциллографу экранированным кабелем длиной не более 30 см.

Монтируя щуп, следует принимать меры по предупреждению пробоя полевого транзистора статическим электричеством и наводками от сети.

Настройка устройства заключается в калибровке для получения требуемого коэффициента передачи и подборе емкости конденсатора С1. Проведение калибровки потребует применения регулируемого источника постоянного тока и вольтметра. Подбором сопротивления резистора R1 устанавливают коэффициент передачи К=0,4 (или 0,5), при этом учитывают начальное напряжение смещения на выходе.

При подборе емкости конденсатора С1 необходим генератор прямоугольных импульсов с амплитудой сигнала на выходе 2...10 В и частотой следования 1...10 кГц. Для обеспечения крутых фронтов можно использовать триггерный делитель частоты, например, на микросхемах серий К155, К176, К561. Изменением емкости конденсатора С1 частотной компенсации добиваются получения на экране осциллографа прямоугольных импульсов без завала фронтов, амплитуда выбросов на фронтах должна быть не более 10 % от амплитуды импульсов. Слишком большая емкость вызывает значительные выбросы по фронтам, недостаточная - их затягивание.

На корпус изготовленной конструкции необходимо нанести надписи параметров устройства - входной емкости, сопротивления и коэффициента передачи.

При проведении измерений с отсчетом постоянной составляющей осциллограф необходимо скорректировать по уровню отсчета. Для этого следует замкнуть вход щупа и луч осциллографа установить на нулевую отметку.