Направление окислительно восстановительных. Направление протекания окислительно-восстановительных реакций

Критерием самопроизвольного протекания химических процессов является изменение свободной энергии Гиббса (ΔG  О). Изменение энергии Гиббса ОВР связано с разностью окислительно-восстановительных (электродных) потенциалов участников окислительно-восстановительного процесса Е:

где F – постоянная Фарадея; n – число электронов, участвующих в окислительно-восстановительном процессе; Е – разность окислительно-восстано-вительных потенциалов или электродвижущая сила ОВР (ЭДС гальванического элемента, образованного двумя окислительно-восстановительными системами):

Е =  0 –  В,

где  0 – потенциал окислителя,  В – потенциал восстановителя.

Учитывая вышеизложенное: ОВР протекает в прямом направлении, если ее ЭДС положительна, т.е. Е О; в противном случае (Е О) ОВР будет протекать в обратном направлении. ЭДС, вычисленная для стандартных условий, называется стандартной и обозначается Е.

Пример 1: Определите, возможно ли протекание реакции в прямом направлении при стандартных условиях:

2Fe 3+ + 2 I 2Fe 2+ + I 2 .

При протекании реакции в прямом направлении окислителем будут являться ионы Fe3+, восстановителем – иодид-ионы (I). Рассчитаем стандартную ЭДС:

Ответ: протекание данной реакции возможно только в прямом направлении.

Пример 2. Определите направление протекания реакции при стандартных условиях:

2KCI + 2MnCI 2 + 5CI 2 + 8H 2 O  2KMnO 4 + 16HCI.

Предположим, что реакция протекает в прямом направлении, тогда

Протекание реакции в прямом направлении невозможно. Она будет протекать справа налево, в этом случае .

Ответ: данная реакция протекает справа налево.

Таким образом, реакция будет протекать в направлении, в котором ЭДС положительна. Всегда системы с более высоким окислительно-восстановительным потенциалом будут окислять системы с более низким его значением.

10. Электрохимические процессы

Процесс взаимного превращения химической и электрохимической форм энергии называют электрохимическими процессами. Электрохимические процессы можно разделить на две основные группы:

1) процессы превращения химической энергии в электрохимическую (в гальванических элементах);

2) процессы превращения электрической энергии в химическую (электролиз).

Электрохимическая система состоит из двух электродов и ионного проводника между ними (расплав, раствор электролита или твёрдые электролиты – проводники 2-го рода). Электродами называют проводники первого рода, имеющие электронную проводимость и находящиеся в контакте с ионным проводником. Для обеспечения работы электрохимической системы электроды соединяют друг с другом металлическим проводником, называемым внешней цепью электрохимической системы.

10.1. Гальванические элементы (химические источники электрического тока)

Гальванический элемент (ГЭ) – это устройство, в котором химическая энергия окислительно-восстановительной реакции превращается в энергию электрического тока. Теоретически для получения электрической энергии можно применить любую ОВР.

Рассмотрим один из наиболее простых ГЭ – медно – цинковый, или элемент Даниэля – Якоби (рис. 10.1). В нём проводником соединяются пластинки из цинка и меди, при этом каждый из металлов опущен в раствор соответствующей соли: сульфата цинка и сульфата меди (II). Полуэлементы соединены электролитическим ключом 1 , если находятся в разных сосудах или разделены пористой перегородкой, если находятся в одном сосуде.

Рассмотрим сначала состояние этого элемента при разомкнутой внешней цепи – режим «холостого хода». На электродах в результате процесса обмена устанавливаются следующие равновесия, которым в стандартных условиях соответствуют стандартные электродные потенциалы:

Zn 2+ + 2e -  Zn
= - 0,76В

Cu 2+ + 2e -  Cu
= +0,34В.

Потенциал цинкового электрода имеет более отрицательное значение, чем потенциал медного электрода, поэтому при замыкании внешней цепи, т.е. при соединении цинка с медью металлическим проводником, электроны будут переходить от цинка к меди. В результате перехода электронов от цинка к меди равновесие на цинковом электроде сместится влево, поэтому в раствор перейдёт дополнительное количество ионов цинка (растворение цинка на цинковом электроде). В то же время равновесие на медном электроде сместится вправо и произойдёт разряд ионов меди (выделение меди на медном электроде). Данные самопроизвольные процессы будут продолжаться до тех пор, пока не выровняются потенциалы электродов или не растворится весь цинк (или вся медь не осадится на медном электроде).

Итак, при работе элемента Даниэля – Якоби протекают следующие процессы:

1) движение электронов во внешней цепи от цинкового электрода к медному, т.к.
<
;

2) реакция окисления цинка: Zn – 2e - = Zn 2+ .

Процессы окисления в электрохимии получили название анодных процессов, а электроды, на которых идут процессы окисления, называют анодами; следовательно, цинковый электрод – анод;

3) реакция восстановления ионов меди: Сu 2+ + 2е = Сu.

Процессы восстановления в электрохимии получили название катодных процессов, а электроды, на которых идут процессы восстановления, называют катодами; следовательно, медный электрод – катод;

4) движение ионов в растворе: анионов (SO 4 2-) к аноду, катионов (Cu 2+ ,Zn 2+) к катоду, замыкает электрическую цепь гальванического элемента;

5) cуммируя электродные реакции, получаем:

Zn + Cu 2+ = Cu + Zn 2+

или в молекулярном виде: Zn + CuSO 4 = Cu + ZnSO 4 .

Вследствие этой химической реакции в гальваническом элементе возникает движение электронов во внешней цепи ионов внутри элемента, т.е. электрический ток, поэтому суммарная химическая реакция, протекающая в гальваническом элементе, называется токообразующей .

При схематической записи, заменяющей рисунок гальванического элемента, границу раздела между проводником 1-го рода и проводником 2-го рода обозначают одной вертикальной чертой, а границу раздела между проводниками 2-го рода – двумя чертами. Анод – источник электронов, поступающих во внешнюю цепь – принято считать отрицательным, катод – положительным. Анод помещается в схеме слева. Схема ГЭ Даниэля – Якоби, например, записывается в виде:

(-) Zn |ZnSO 4 | |CuSO 4 | Cu (+)

или в ионно-молекулярном виде:

(-) Zn |Zn 2+ ||Cu 2+ | Cu (+).

Причиной возникновения и протекания электрического тока в гальваническом элементе является разность окислительно-восстановитель-ных потенциалов (электродных потенциалов 1 ) частных реакций, определяющих электродвижущую силу Е э гальванического элемента, и в рассматриваемом случае:

В общем случае: Е э = к - а ,

где  к – потенциал катода,  а – потенциал анода.

Е э всегда больше нуля (Е э > О). Если реакция осуществляется в стандартных условиях, то наблюдаемая при этом ЭДС называется стандартной электродвижущей силой данного элемента. Для элемента Даниэля – Якоби стандартная ЭДС= 0,34 – (-0,76) = 1,1(В).

Пример.

Составьте схему, напишите уравнения электродных процессов и токообразующей реакции для гальванического элемента, образованного висмутом и железом, опущенных в растворы собственных солей с концентрацией ионов металлов в растворе C Bi 3+ = 0,1 моль/л, C Fe 2+ = 0,01 моль/л. Рассчитайте ЭДС этого элемента при 298К.

Решение.

Концентрации ионов металлов в растворе отличны от концентрации 1 моль/л, поэтому нужно рассчитать потенциалы металлов по уравнению Нернста, сравнить их и определить анод и катод.

 ме n + /ме =  о ме n + /ме +
lgСме n + ;

 Bi 3+ / Bi = 0,21 +
lg10 -1 = 0,19В;  F е 2+ / F е = -0,44 +
lg10 -2 = - 0,499В.

Железный электрод – анод, висмутовый – катод. Схема ГЭ:

(-)Fe |Fe(NO 3) 2 ||Bi(NO 3) 3 |Bi(+)

или (-) Fe|Fe 2+ ||Bi 3+ |Bi (+).

Уравнения электродных процессов и токообразующей реакции:

А:Fe - 2 = Fe 2+ 3

К:Bi 3+ + 3 = Bi 2

3 Fe + 2Bi 3+ = 3Fe 2+ + 2 Bi

ЭДС данного элемента Е э = 0,19 – (-0,499) = 0,689 В.

В ряде случаев металл электрода не претерпевает изменений в ходе электродного процесса, а участвует лишь в передаче электронов от восстановленной формы вещества к его окисленной форме. Так, в гальваническом элементе

Pt |Fe 2+ , Fe 3+ || MnO, Mn 2+ , H + | Pt

роль инертных электродов играет платина. На платиновом аноде окисляется железо (II):

Fe 2+ - е - = Fe 3+ ,

,

а на платиновом катоде восстанавливается MnO:

MnO 4 - + 8H + + 5e - = Mn 2+ + 4H 2 O, .

Уравнение токообразующей реакции:

5Fe 2+ + MnO 4 - + 8H + = 5Fe 3+ + Mn 2+ + 4H 2 O

Стандартная ЭДС Е=1,51-0,77=0,74 В.

Гальванический элемент может быть составлен не только из различных, но и из одинаковых электродов, погруженных в растворы одного и того же электролита, различающиеся только концентрацией (концентрационные гальванические элементы). Например:

(-) Ag |Ag + ||Ag + |Ag (+)

C Ag  C Ag

Электродные реакции: A: Ag – eˉ = Ag + ;

K: Ag + + eˉ = Ag.

Уравнение токообразующей реакции: Ag+Ag + =Ag + +Ag.

Свинцовый аккумулятор. Готовый к употреблению свинцовый аккумулятор состоит из решётчатых свинцовых пластин, одни из которых заполнены диоксидом свинца, а другие – металлическим губчатым свинцом. Пластины погружены в 35 – 40 % раствор H 2 SO 4 ; при этой концентрации удельная электропроводность раствора серной кислоты максимальна.

При работе аккумулятора – при его разряде – в нём протекает ОВР, в ходе которой свинец (Pb) окисляется, а диоксид свинца восстанавливается:

(-) Рb|H 2 SO 4 | РbО 2 (+)

А: Рb + SO –2еˉ = РbSO 4

К: РbО 2 + SO + 4Н + + 2еˉ = PbSO 4 + 2H 2 O

Pb + PbO 2 + 4H + + 2SO 4 2- = 2PbSO 4 + 2H 2 O (токообразующая реакция).
.

Во внутренней цепи (в растворе Н 2 SO 4) при работе аккумулятора происходит перенос ионов: ионы SO 4 2- движутся к аноду, а катионы Н + - к катоду. Направление этого движения обусловлено электрическим полем, возникающим в результате протекания электродных процессов: у анода расходуются анионы, а у катода – катионы. В итоге раствор остаётся электронейтральным.

Для зарядки аккумулятора подключаются к внешнему источнику постоянного тока (“+” к “+”, “–“ к “–“). При этом ток протекает через аккумулятор в обратном направлении, обратном тому, в котором он проходил при разряде аккумулятора; в электрохимической системе осуществляется электролиз (см. р. 10.2). В результате этого электрохимические процессы на электродах «обращаются». На свинцовом электроде теперь происходит процесс восстановления (электрод становится катодом):

PbSO 4 + 2eˉ = Pb + SO 4 2- .

На электроде из PbO 2 при заряде идёт процесс окисления (электрод становится анодом):

PbSO 4 + 2H 2 O - 2eˉ = PbO 2 + 4H + + SO 4 2- .

Суммарное уравнение:

2PbSO 4 + 2H 2 O = Pb + PbO 2 + 4H + + 2SO 4 2- .

Нетрудно заметить, что этот процесс противоположен тому, который протекает при работе аккумулятора: при заряде аккумулятора в нём вновь получаются вещества, необходимые для его работы.

Рассмотрим процессы, которые будут наблюдаться, если металлическую пластинку (электрод) опустить в воду. Поскольку все вещества в какой-то мере растворимы, в такой системе начнет протекать процесс перехода в раствор катионов металла с их последующей гидратацией. Освобождающиеся при этом электроны будут оставаться на электроде, сообщая ему отрицательный заряд. Отрицательно заряженный электрод будет притягивать катионы металла из раствора, в результате чего в системе установится равновесие:

M M n+ + ne - ,

при котором электрод будет иметь отрицательный заряд, а прилегающий к нему слой раствора - положительный. Приведенное выше уравнение описывает полуреакцию, для которой окисленной формой являются катионы M n+ , а восстановленной формой - атомы металла М.

Рис. 26. Механизмы возникновения разности потенциалов на поверхности раздела

электрод – раствор.

Если в рассматриваемую систему ввести соль, отщепляющую при диссоциации катионы M n+ , равновесие сместится в сторону обратной реакции. При достаточно высоком значении концентрации M n+ становится возможным осаждение ионов металла на электроде, который при этом приобретет положительный заряд, тогда как прилегающий к поверхности электрода слой раствора, содержащий избыток анионов, будет заряжен отрицательно. Знак заряда электрода в конечном итоге будет определяться химической активностью металла, способствующей появлению отрицательного заряда, и концентрацией катиона металла в растворе, увеличение которой способствует появлению положительного заряда. Однако в любом случае в такой системе формируется двойной электрический слой и возникает скачок потенциала на границе раздела электрод – раствор (рис. 26). Скачок потенциала на границе раздела электрод - раствор называется электродным потенциалом.

В рассмотренном нами примере металл электрода подвергался химическим изменениям. Это условие не является обязательным для возникновения электродного потенциала. Если какой-либо инертный электрод (графитовый или платиновый) погрузить в раствор, содержащий окисленную и восстановленную формы (ОФ и ВФ) какой-то полуреакции, то на границе раздела электрод - раствор также возникнет скачок потенциала. Возникновение электродного потенциала в этом случае будет определяться протеканием полуреакции:

ОФ + ne - ВФ

Поскольку обмен электронами идет через поверхность электрода, который в данном случае играет роль посредника, смещение равновесия в сторону прямой реакции будет способствовать появлению на электроде положительного заряда, а в сторону обратной реакции - отрицательного. Электрод при этом не будет изменяться химически; он будет лишь служить источником или приемником электронов. Таким образом, любая окислительно-восстановительная реакция может быть охарактеризована определенным значением окислительно-восстановительного потенциала разности потенциалов, возникающей на поверхности инертного электрода, погруженного в раствор, содержащий окисленную и восстановленную форму вещества.



Значение электродного потенциала зависит от природы и концентрации окисленной и восстановленной форм, а также от температуры. Эта зависимость выражается уравнением Нернста:

,

где R - универсальная газовая постоянная, Т - абсолютная температура, n - число электронов, соответствующее переходу окисленной формы в восстановленную, F - число Фарадея (96485 Кл·моль -1), C ox и C red - концентрации окисленной и восстановленной формы, x и y - коэффициенты в уравнении полуреакции, Е˚ - электродный потенциал, отнесенный к стандартным условиям (р = 101,326 кПа, Т = 298 К, C ox = C red =1 моль/л). Величины Е˚ называют стандартными электродными потенциалами.

При температруе 298 К уравнение Нернста легко преобразуется к более простому виду:

Абсолютные значения электродных потенциалов измерить невозможно, однако можно определить относительные значения электродных потенциалов, сравнивая измеряемый потенциал с другим, принятым за эталон. В качестве такого эталонного потенциала используют стандартный потенциал водородного электрода. Водородный электрод представляет собой платиновую пластинку, покрытую слоем пористой платины (платиновая чернь) и погруженную в раствор серной кислоты с активностью катионов водорода, равной 1 моль/л, при температуре 298 К. Платиновая пластинка насыщается водородом под давлением, равным 101,326 кПа (рис. 27). Абсорбированный платиной водород является более активным компонентом, чем платина, и электрод ведет себя так, как если бы он бы выполнен из водорода. В результате в системе возникает электродный потенциал за счет полуреакции



Н 2 ¾ 2Н ¾® 2Н + + 2е -

Этот потенциал условно принимают равным нулю. Если окисленная форма той или иной полуреакции является более активным окислителем, чем катион водорода, значение электродного потенциала этой полуреакции будет величиной положительной, в противном случае - отрицательной. Величины стандартных электродных потенциалов приводят в справочных таблицах.

Рис. 27. Схема строения водородного электрода.

Уравнение Нернста позволяет рассчитывать значения электродных потенциалов при различных условиях. Например, требуется определить электродный потенциал полуреакции:

MnO 4 - + 8H + + 5e - = Mn 2+ + 4H 2 O,

если температура равна 320 К, а концентрации MnO 4 - , Mn 2+ и Н + равны соответственно 0,800; 0,0050 и 2,00 моль/л. Значение Е˚ для этой полуреакции равно 1,51 В. Соответственно

Направление окислительно-восстановительных реакций. Поскольку электродный потенциал связан с изменением свободной энергии Гиббса соотношением:

электродные потенциалы могут быть использованы для определения направления окислительно-восстановительных процессов.

Пусть окислительно-восстановительной реакции соответствуют полуреакции:

X(1) + n 1 e - = Y(1); ΔG° 1 = -n 1 FE° 1 ,

X(2) + n 2 e - = Y(2); ΔG° 2 = -n 2 FE° 2

Cовершенно очевидно, что одна из этих полуреакций должна протекать слева направо (процесс восстановления), а другая - справа налево (процесс окисления). Изменение энергии Гиббса для рассматриваемой реакции будет определяться разностью электродных потенциалов полуреакций

ΔG° = aΔG° 2 - bΔG° 1 = -nF(E° 2 - E° 1);

где a и b - множители, уравнивающие число отданных и присоединенных в процессе реакции электронов (n = an 1 = bn 2). Чтобы реакция протекала самопроизвольно величина ΔG должна быть отрицательной, а это будет иметь место тогда, когда Е 2 > Е 1 . Таким образом, в процессе ОВР из двух окисленных форм восстанавливается та, для которой электродный потенциал больше, а из двух восстановленных форм окисляется та, для которой электродный потенциал меньше.

Пример. Определить направление реакции при стандартных условиях:

MnO 4 - + 5Fe 2+ + 8H + = Mn 2+ + 5Fe 3+ + 4H 2 O

Запишем уравнения перехода двух окисленных форм в восстановленные и по справочным таблицам найдем соответствующие значения электродных потенциалов:

Fe 3+ + 1e - = Fe 2+ │5 E° 1 = 0,77 B

MnO 4 - + 8H + + 5e - = Mn 2+ + 4H 2 O │1 E° 2 = 1,51 В

Поскольку E° 2 > E° 1 , вторая полуреакция будет протекать слева направо, а первая полуреакция - справа налево. Таким образом, процесс будет протекать в направлении прямой реакции.

Гальванический элемент

Окислительно-восстановительные реакции, как уже указывалось, сопровождаются переносом электронов от восстановителя к окислителю. Если разделить процессы окисления и восстановления в пространстве, можно получить направленный поток электронов, т.е. электрический ток. Устройства, в которых химическая энергия окислительно-восстано-вительной реакции преобразуется в энергию электрического тока, называются химическими источниками тока или гальваническими элементами .

В простейшем случае гальванический элемент состоит из двух полуэлементов - сосудов, заполненных растворами соответствующих солей, в которые погружены металлические электроды. Полуэлементы соединены U-образной трубкой (сифоном), заполненной раствором электролита, или полупроницаемой мембраной, что дает возможность ионам переходить из одного полуэлемента в другой. Если электроды не соединены внешним проводником, то полуэлементы находятся в состоянии равновесия, обеспечиваемым определенным зарядом на электродах. Если же цепь замкнуть, равновесие нарушается, так как электроны начнут переходить с электрода, имеющего меньший электродный потенциал, на электрод с большим электродным потенциалом. В результате в системе начнет протекать окислительно-восстановительная реакция, причем на электроде с большим значением потенциала будет идти процесс восстановления, а на электроде с меньшим значением потенциала - процесс окисления. Электрод, на котором протекает реакция восстановления, называется катодом; электрод, на котором протекает реакция окисления - анодом.

Рис. 28. Схема строения медно-цинкового гальванического элемента.

В качестве примера рассмотрим элемент Даниэля-Якоби, который состоит из медного и цинкового электродов, погруженных в растворы сульфатов этих металлов (рис. 28). В этом элементе окисленными формами являются катионы Zn 2+ и Cu 2+ , восстановленными формами - цинк и медь. Уравнения полуреакций для системы имеют вид:

Zn 2+ + 2e - = Zn 0 ; E° 1 = -0,76 B

Cu 2+ + 2e - = Cu 0 ; E° 2 = 0,34 B

Поскольку E° 2 > E° 1 , вторая полуреакция будет протекать слева направо, а первая – справа налево, т.е. в системе будет протекать реакция:

Zn + Cu 2+ = Zn 2+ + Cu

Процесс будет идти до тех пор, пока не растворится цинковый электрод или не восстановятся все ионы меди. В случае медно-цинкового элемента катодом является медный электрод (на нем ионы Cu 2+ восстанавливаются до металлической меди), а анодом - цинковый электрод (на нем атомы цинка окисляются до ионов Zn 2+). Электродвижущая сила элемента равна разности электродных потенциалов катода и анода:

ΔЕ = Е катод - Е анод

При стандартных условиях ΔЕ = 0,34 - (-076) = 1,10 (В).

Для записи схемы гальванических элементов используют приведенную ниже форму:

Анод │ Анодный раствор ││ Катодный раствор │ Катод

Для анодного и катодного растворов указывают концентрации соответствующих ионов в момент начала работы гальванического элемента. Так, элементу Даниэля-Якоби с концентрациями CuSO 4 и ZnSO 4 , равными 0,01 моль/л, отвечает схема:

Zn │ Zn 2+ (0,01 M) ││ Cu 2+ (0,01 M)│ Cu

Путем измерения ЭДС гальванических элементов определяют стандартные электродные потенциалы тех или иных полуреакций. Пусть, например, необходимо установить Е˚ полуреакции:

Fe 3+ + 1e - = Fe 2+

Для этого достаточно собрать гальванический элемент:

Pt│H 2 (г) (101,3 кПа), H + (1M)││Fe 3+ (1M), Fe 2+ (1M) │Pt

и измерить его ЭДС, последняя равна 0,77 В. Отсюда:

E°(Fe +3 /Fe +2) = DE + E°(H + /H) = 0,77 В + 0 = +0,77 В

Электролиз

Пропуская через раствор или расплав электролита электрический ток, можно осуществлять окислительно-восстановительные реакции, которые не протекают самопроизвольно. Процесс раздельного окисления и восстановления на электродах, осуществляемый за счет протекания электрического тока от внешнего источника, называется электролизом.

При электролизе анодом является положительный электрод, на котором протекает процесс окисления, а катодом - отрицательный электрод, на котором осуществляется процесс восстановления. Названия "анод" и "катод", таким образом, не связаны с зарядом электрода: при электролизе анод положителен, а катод отрицателен, а при работе гальванического элемента - наоборот. В процессе электролиза анод является окислителем, катод - восстановителем. Количественно процесс электролиза описывают законы М. Фарадея (1833 г.):

1. Масса выделившегося на электроде вещества пропорциональна количеству электричества, прошедшего через раствор или расплав.

2. Для выделения на электроде одного моля эквивалента любого вещества затрачивается одно и то же количество электричества.

Обобщенно законы Фарадея выражаются следущим уравнением:

где m - масса продукта электролиза, I - сила тока, t - время прохождения тока, F - константа, равная 96485 Кл. моль -1 (число Фарадея), М э - эквивалентная масса вещества.

Как уже указывалось, электролизу подвергаются как растворы, так и расплавы электролитов. Наиболее просто протекает электролиз расплавов. В этом случае на катоде происходит восстановление катиона, а на аноде - окисление аниона электролита. Например, электролиз расплава хлорида натрия протекает по уравнениям:

Катодный процесс: Na + + 1e - = Na | 2

Уравнение электролиза: 2NaCl = 2Na + Cl 2

Электролиз растворов протекает значительно сложней, так как в этом случае электролизу могут подвергаться молекулы воды. При электролизе вода может и окисляться, и восстанавливаться соответственно следующим полуреакциям:

1. Восстановление воды (катодный процесс):

2Н 2 О + 2е - = Н 2 + 2ОН - ; Е° = -0,83 В

2. Окисление воды (анодный процесс):

2Н 2 О - 4е - = 4Н + + О 2 ; Е° = 1,23 В

Поэтому при электролизе водных растворов наблюдается конкуренция между электродными процессами с различными значениями электродных потенциалов. В идеальном случае на катоде должна протекать полуреакция с наибольшим значением электродного потенциала, а на аноде - полуреакция с наименьшим значением электродного потенциала. Однако для реальных процессов значение электродных потенциалов - не единственный фактор, влияющий на характер взаимодействия.

В большинстве случаев выбор между конкурирующими реакциями при электролизе можно сделать на основании следующих правил:

1. Если металл в ряду стандартных электродных потенциалов стоит правее водорода, то на катоде восстанавливается металл.

2. Если металл в ряду стандартных электродных потенциалов стоит левее алюминия (включительно), на катоде выделяется водород за счет восстановления воды.

3. Если металл в ряду стандартных электродных потенциалов занимает место между алюминием и водородом, на катоде идет параллельное восстановление металла и водорода.

4. Если электролит содержит анионы кислородсодержащих кислот, гидроксила или фторид-анион, на аноде окисляется вода. Во всех остальных случаях на аноде окисляется анион электролита. Такой порядок окисления восстановителей на аноде объясняется тем, что полуреакции:

F 2 + 2e - = 2F -

отвечает очень высокий электродный потенциал (E° = 2,87 В), и она практически никогда не реализуется, если возможна другая конкурирующая реакция. Что же касается кислородсодержащих анионов, то продуктом их окисления является молекулярный кислород, которому соответствует высокое перенапряжение (0,5 В на платиновом электроде). По этой причине при электролизе водных растворов хлоридов на аноде окисляются ионы хлора, хотя электродный потенциал полуреакции

2Cl - - 2e - = Cl 2 ; E° = 1,36 В

выше, чем электродный потенциал окисления воды (E° = 1,23 В).

На процесс электролиза оказывает влияние также материал электрода. Различают инертные электроды, которые не изменяются в процессе электролиза (графит, платина), и активные электроды, подвергающиеся при электролизе химическим изменениям.

Рассмотрим некоторые примеры электролиза растворов.

Пример 1 . Электролиз водного раствора сульфата меди(II) с инертными электродами.

CuSO 4 = Cu 2+ + SO

Катодный процесс: Cu 2+ + 2e - = Cu | 2

Уравнение электролиза: 2Cu 2+ + 2H 2 O = 2Cu + 4H + + O 2

или 2СuSO 4 + 2H 2 O = 2Cu + 2H 2 SO 4 + O 2

Пример 2 . Электролиз водного раствора сульфата меди с медным анодом.

Катодный процесс: Сu 2+ + 2e - = Cu

Анодный процесс: Cu 0 - 2e - = Cu 2+

Электролиз сводится к переносу меди с анода на катод.

Пример 3 . Электролиз водного раствора сульфата натрия с инертными электродами.

Na 2 SO 4 = 2Na + + SO

Kатодный процесс: 2H 2 O + 2e - = H 2 + 2OH - | 2

Анодный процесс: 2H 2 O - 4e - = 4H + + O 2 | 1

Уравнение электролиза: 2H 2 O = 2H 2 + O 2

Электролиз сводится к разложению воды.

Пример 4 . Электролиз водного раствора хлорида натрия с инертными электродами.

NaCl = Na + + Cl -

Катодный процесс: 2H 2 O + 2e - = H 2 + 2OH - | 1

Анодный процесс: 2Cl - - 2e - = Cl 2 | 1

Уравнение электролиза: 2Cl - + 2H 2 O = H 2 + Cl 2 + 2OH -

или 2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2

Электролиз широко используется в промышленности для получения ряда активных металлов (алюминия, магния, щелочных и щелочноземельных металлов), водорода, кислорода, хлора, гидроксида натрия, пероксида водорода, перманганата калия и ряда других практически важных веществ. Электролиз применяется для нанесения прочных металлических пленок с целью защиты металлов от коррозии.

Коллоидные растворы

При описании окислительно-восстановительных реакций нельзя ограничиваться лишь качественной стороной протекания процесса, а необходимо уметь и количественно характеризовать его, что позволяет определять направление данной реакции. Для количественной оценки окислительновосстановительных реакций важное значение имеют такие характеристики, как окислительно-восстановительные потенциалы и определение изменения энергии Гиббса системы.

Окислительно-восстановительные потенциалы. Рассмотрим реакцию взаимодействия цинка с раствором сульфата меди:

При постоянных температуре и давлении (25°С и 101 325 Па) в соответствии с законом Гесса процесс будет сопровождаться тепловым эффектом:

Цинк как восстановитель отдает электроны. Этот процесс можно изобразить в виде полуреакции

Ион меди как окислитель принимает электроны, что выражается второй полуреакцией

Обе полуреакции протекают в месте соприкосновения цинка с раствором CuS0 4 , и при этом электроны переходят непосредственно от цинка к ионам меди. Данную реакцию можно осуществить и так, чтобы окислительная и восстановительная полуреакции были пространственно разделены. Тогда электроны будут переходить от восстановителя к окислителю по проводнику электрического тока - внешней цепи. Для этого цинковую пластинку погружают в раствор ZnS0 4 , а медную - в раствор CuS0 4 . Если оба полученных полуэлемента соединить трубкой, заполненной токопроводящим раствором, то получится гальванический элемент Даниэля - Якоби (рис. 9.2).

Рис. 9.2.

гальванического элемента

В первом полуэлементе на цинковом электроде (анод) происходит окисление цинка, а во втором полуэлементе на медном электроде (катод) - восстановление меди. Электроны движутся от цинкового электрода по внешней цени к медному вследствие возникшей разности потенциалов. При суммировании уравнений обеих полуреакций получим уравнение токообразующей реакции:

Образующиеся в процессе окисления катионы цинка создают в растворе избыточный положительный заряд. Раствор, в котором находится медный электрод, обедняется катионами меди, поэтому этот раствор характеризуется избыточным отрицательным зарядом. В возникшем электрическом поле катионы меди и цинка перемещаются от цинкового электрода к медному, а анионы S0 4 + - от медного к цинковому электроду, что можно представить схемой

Электродвижущая сила (ЭДС) гальванического элемента возникает за счет протекания окислителыю-восстаиовителыюй реакции. Движущей силой химической реакции является убыль энергии Гиббса AG , которая определяет максимальную работу химической реакции. При замыкании внешней цепи часть энергии системы расходуется на выделение джоулевой теплоты, нс сопровождающееся полезной работой, и процесс протекает необратимо. Максимальную же работу гальванический элемент совершает при обратимом проведении реакции в равновесных условиях. Это возможно тогда, когда ЭДС элемента полностью скомпенсирована внешней ЭДС (равной по величине и противоположной по знаку). При этом изменение свободной энергии определяется произведением протекающего через гальванический элемент электричества на напряжение элемента Е:

где п - число молей, передаваемых в процессе электронов; F - постоянная Фарадея (величина nF равна количеству электричества).

Если процесс протекает в стандартных условиях (25°С, активность ионов равна 1), то напряжение элемента обозначается Е°, а соответствующее изменение энергии - AG°. Уравнение (9.1) примет вид

Отрицательный знак правой части уравнения (9.2) показывает, что если электрохимический элемент самопроизвольно создает электрическое напряжение, то в результате система должна терять энергию. Величина Е°, называемая стандартным электродным (окислительно-восстановительным) потенциалом, представляет собой потенциал данного электродного процесса, в котором активность всех участвующих в нем ионов равна 1.

Чтобы определить Е°, необходимо иметь другую электродную систему с известным потенциалом. Объединяя две электродные системы в гальваническую ячейку, можно измерить ее ЭДС. В качестве стандартного электрода принята водородная система, состоящая из платиновой черни, насыщенной газообразным водородом. Значения стандартного электродного потенциала растворенных веществ относят к 1 М растворам, а для газообразных соединений - к 101 325 Па. Так как Е° для водородного электрода принят равным нулю, то АС° реакции

должно быть также условно принято равным нулю. Следовательно, если М" + (окисленная форма системы М и+ /М(т)) является лучшим окислителем (акцептором электронов), чем Н 3 0 то реакция

сопровождается уменьшением свободной энергии. Стандартный электродный потенциал такой реакции имеет положительное значение (уравнение (9.1)). С другой стороны, если М является лучшим восстановителем, чем водород, то стандартный электродный потенциал такой реакции будет отрицательным. Так, для системы

равновесие смещено в сторону образования металла, поэтому A Е° > 0; истинное значение Е° = +0,80 В.

Например, у натрия равновесие «металл - ион металла» смещено в сторону иона и Е° = -2,71 В.

Из этих примеров легко понять, что реакции с участием сильноосновных элементов (Li, К, Na, Са и т.д.), которые легко отдают электроны (восстановители), характеризуются отрицательным значением Е° , в то время как реакциям с участием слабоосновных элементов, имеющих тенденцию к присоединению электронов (окислители), отвечают положительные значения Е°. Ряд элементов, расположенных в порядке возрастания стандартных электродных потенциалов, называют электрохимическим рядом (табл. 9.1).

В процессах образования катионов в растворе элемент, стоящий выше в этом ряду, будет вытеснять элементы, стоящие ниже.

Из табл. 9.1 ясно, что хлор (Е° = +1,36) - более сильный окислитель, чем бром (Е° = +1,07), а цинк (Е° = -0,76) - более сильный восстановитель, чем свинец (Е° = -0,13).

Таблица 9.1

Электрохимический ряд

Если требуется сравнить две окислительно-восстановительные системы и выяснить, в каком направлении может протекать реакция, то необходимо сопоставить их нормальные потенциалы. Система, характеризующаяся более положительным потенциалом, будет играть роль окислителя, т.е. проявлять тенденцию к присоединению электронов. Так, если смешать растворы солей (Sn 4+ , Sn 2 ") и (Fe 3+ , Fe 2+), то реакция

пойдет слева направо, так как Е р е > Е$ п.

Многие окислители являются анионами кислородсодержащих кислот, и их реакции обычно протекают в кислой среде:

В табл. 9.2 приведены значения восстановительных потенциалов окислительно-восстановительных систем в водных растворах.

Таблица 9.2

Стандартные потенциалы некоторых окислительно-восстановительных систем

в водных растворах при 25°С

Е°, В

Часто вместо символа Е° используют символ ср°.

Пользуясь данными табл. 9.1 и 9.2, можно определить, в какую сторону будут протекать реакции с участием FeCl 3 и галогенидами, что представлено в общем виде:

Для пяти возможных электродных реакций находим значения стандартных электродных потенциалов:

Представим предполагаемую реакцию в ионной форме:

Известно, что самостоятельный переход электронов происходит от электрохимической системы с более низким значением электродного потенциала к системе с более высоким его значением. Из этого следует, что первая из этих систем будет восстановителем, а вторая - окислителем. Разность между значениями Е° в реакции FeCl 3 с галогенидами будет соответственно равна: для KF Е° = 0,77 - 2,80 = -2,03 В; для КС1 Е° = 0,77 - 1,36 = -0,59 В; для КВг Е° = 0,77 - 1,07 = -0,30 В; для KI Е° = 0,77 - 0,54 = +0,23 В. Как видим, разность между стандартными потенциалами имеет положительное значение только в случае KI, поэтому именно в присутствии иодида калия реакция протекает слева направо, т.е. будет происходить восстановление Fe 3 " до Fe 2+ .

Рассмотрим возможность окисления ЫВг водными растворами КМп0 4 или К 2 Сг 2 0 7 .

Для систем

значения Е° соответственно равны +1,51 В и +1,33 В.

Для реакции Вг 2 + 2е~ -» 2Вг; Е° = +1,07 В.

Следовательно, оба раствора будут окислять НВг.

Иногда приходится иметь дело и с такими окислительно-восстановительными реакциями, когда значения Е° для окислителя и восстановителя близки между собой. В таких случаях для решения вопроса о направлении реакции необходимо учитывать влияние концентраций окисленной и восстановленной форм соответствующих веществ на электродные потенциалы. Уравнение, связывающее величину электродного потенциала с концентрациями окисленной и восстановленной форм вещества и температурой, имеет вид

где R - молярная газовая постоянная; п - число передаваемых в процессе молей электронов; Т - абсолютная температура; F - постоянная Фарадея; [ок| - концентрация окисленной формы; [вое| - концентрация восстановленной формы; тц - коэффициенты в уравнении реакции. Используя соотношение (9.3), называемое уравнением Нернста, рассмотрим реакцию

которая самопроизвольно может идти в обоих направлениях в зависимости от концентраций ионов железа и ртути. При этом имеют место две электрохимические системы:

Каждому электродному процессу в соответствии с формулой (9.3) отвечают следующие потенциалы:

Допустим, что = = 10 1 моль/1000 г Н 2 0, a = 10 4 моль/ 1000 г Н 2 0. Подставляя эти данные в соотношения для?, и E v получим

Эти данные показывают, что Е { > Е 2 . Следовательно, реакция протекает слева направо.

Если представить обратное соотношение концентраций, т.е. |Hg 2 + ] = = |Fe 2+ ] = 10" 4 , a = 10" 1 моль/1000 г Н 2 0, то

Имеем?, E v поэтому реакция протекает справа налево.

Направление и полноту протекания окислительно-восстановительной реакции можно определить исходя из константы равновесия. Так, для процесса, выражаемого следующими двумя полуреакциями:

где mw q - стехиометрические множители окислительно-восстановительной реакции, произведение mwq равно количеству электронов, передаваемых в ходе реакции.

Поскольку в момент равновесия наступает равенство потенциалов окислителя и восстановителя, то, пользуясь уравнением (9.3), можно рассчитать К? . Обозначим Е ок = E v а Е вос = ?. ; , т.е. Е х = Е.;, тогда в соответствии с уравнением Нернста имеем

Подставив значения R> Т и F, например, при 25°С, получим

откуда следует, что

Так как , то

Следовательно,

где п - число электронов, передаваемых в процессе. Например, для реакции

Если К? > 1, то реакция протекает в направлении образования ее продуктов, т.е. слева направо. Когда К? 1, то реакция смещена в сторону исходных веществ.

Окислительно — восстановительный потенциал является частным, узким случаем понятия электродного потенциала. Рассмотрим подробнее эти понятия.

В ОВР передача электронов восстановителями окислителям происходит при непосредственном контакте частиц, и энергия химической реакции переходит в теплоту. Энергия любой ОВР , протекающей в растворе , может быть превращена в электрическую энергию. Например, если окислительно-восстановительные процессы разделить пространственно, т.е. передача электронов восстановителем будет происходить через проводник электричества. Это реализовано в гальванических элементах, где электрическая энергия получается из химической энергии .

Рассмотрим , в котором левый сосуд наполнен раствором сульфата цинка ZnSO 4 , с опущенной в него цинковой пластинкой, а правый сосуд – раствором сульфата меди CuSO 4 , с опущенным в него медной пластинкой.

Взаимодействие между раствором и пластиной, которая выступает в качестве электрода, способствует тому, чтобы электрод приобрел электрический заряд. Возникающая на границе металл-раствор электролита разность потенциалов, называется электродным потенциалом . Его значение и знак (+ или -) определяются природой раствора и находящегося в нем металла. При погружении металлов в растворы их солей более активные из них (Zn, Fe и др.) заряжаются отрицательно, а менее активные (Cu, Ag, Au и др.) положительно.

Результатом соединения цинковой и медной пластинки проводником электричества, является возникновение в цепи электрического тока за счет перетекания с цинковой к медной пластинке по проводнику.

При этом происходит уменьшение количества электронов в цинке, что компенсируется переходом Zn 2+ в раствор т.е. происходит растворение цинкового электрода — анода (процесс окисления) .

Zn — 2e — = Zn 2+

В свою очередь, рост количества электронов в меди компенсируется разряжением ионов меди, содержащихся в растворе, что приводит к накоплению меди на медном электроде – катоде (процесс восстановления):

Cu 2+ + 2e — = Cu

Таким образом, в элементе происходит такая реакция:

Zn + Cu 2+ = Zn 2+ + Cu

Zn + CuSO 4 = ZnSO 4 + Cu

Количественно охарактеризовать окислительно-восстановительные процессы позволяют электродные потенциалы, измеренные относительно нормального водородного электрода (его потенциал принят равным нулю).

Чтобы определить стандартные электродные потенциалы используют элемент, одним из электродов которого является испытуемый металл (или неметалл), а другим является водородный электрод. По найденной разности потенциалов на полюсах элемента определяют нормальный потенциал исследуемого металла.

Окислительно-восстановительный потенциал

Значениями окислительно-восстановительного потенциала пользуются в случае необходимости определения направления протекания реакции в водных или других растворах.

Проведем реакцию

2Fe 3+ + 2I — = 2Fe 2+ + I 2

таким образом, чтобы йодид-ионы и ионы железа обменивались своими электронами через проводник . В сосуды, содержащие растворы Fe 3+ и I — , поместим инертные (платиновые или угольные) электроды и замкнем внутреннюю и внешнюю цепь. В цепи возникает электрический ток. Йодид-ионы отдают свои электроны, которые будут перетекать по проводнику к инертному электроду, погруженному в раствор соли Fe 3+ :

2I — — 2e — = I 2

2Fe 3+ + 2e — = 2Fe 2+

Процессы окисления-восстановления происходят у поверхности инертных электродов. Потенциал, который возникает на границе инертный электрод – раствор и содержит как окисленную, так восстановленную форму вещества, называется равновесным окислительно-восстановительным потенциалом. Значение окислительно-восстановительного потенциала зависит от многих факторов , в том числе и таких как:

  • Природа вещества (окислителя и восстановителя)
  • Концентрация окисленной и восстановленной форм. При температуре 25°С и давлении 1 атм. величину окислительно-восстановительного потенциала рассчитывают с помощью уравнения Нернста :

E = + (RT/ nF) ln(C ок / C вос) , где

E – окислительно-восстановительный потенциал данной пары;

E°- стандартный потенциал (измеренный при C ок = C вос );

R – газовая постоянная (R = 8,314 Дж);

T – абсолютная температура, К

n – количество отдаваемых или получаемых электронов в окислительно-восстановительном процессе;

F – постоянная Фарадея (F = 96484,56 Кл/моль);

C ок – концентрация (активность) окисленной формы;

C вос – концентрация (активность) восстановленной формы.

Подставляя в уравнение известные данные и перейдя к десятичному логарифму, получим следующий вид уравнения:

E = + (0,059/ n) lg(C ок / C вос)

При C ок > C вос , E > и наоборот, если C ок < C вос , то E <

  • Кислотность раствора. Для пар, окисленная форма которых содержит кислород (например, Cr 2 O 7 2- , CrO 4 2- , MnO 4 —) при уменьшении pH раствора окислительно-восстановительный потенциал возрастает, т.е. потенциал растет с ростом H + . И наоборот, окислительно-восстановительный потенциал падает с уменьшением H + .
  • Температура. При увеличении температуры окислительно-восстановительный потенциал данной пары также растет.

Стандартные окислительно-восстановительные потенциалы представлены в таблицах специальных справочников. Следует иметь ввиду, что рассматриваются только реакции в водных растворах при температуре ≈ 25°С. Такие таблицы дают возможность сделать некоторые выводы:

  • Величина и знак стандартных окислительно-восстановительных потенциалов , позволяют предсказать какие свойства (окислительные или восстановительные) будут проявлять атомы, ионы или молекулы в химических реакциях, например

(F 2 /2F —) = +2,87 В – сильнейший окислитель

(K + /K) = — 2,924 В – сильнейший восстановитель

Данная пара будет обладать тем большей восстановительной способностью, чем больше числовое значение ее отрицательного потенциала, а окислительная способность тем выше, чем больше положительный потенциал.

  • Возможно определить какое из соединений одного элемента будет обладать наиболее сильным окислительными или восстановительными свойствами.
  • Возможно предсказать направление ОВР . Известно, что работа гальванического элемента имеет место при условии, что разность потенциалов имеет положительное значение. Протекание ОВР в выбранном направлении также возможно, если разность потенциалов имеет положительное значение. ОВР протекает в сторону более слабых окислителей и восстановителей из более сильных, например, реакция

Sn 2+ + 2Fe 3+ = Sn 4+ + 2Fe 2+

Практически протекает в прямом направлении, т.к.

(Sn 4+ /Sn 2+) = +0,15 В, а (Fe 3+ /Fe 2+) = +0,77 В, т.е. (Sn 4+ /Sn 2+) < (Fe 3+ /Fe 2+).

Cu + Fe 2+ = Cu 2+ + Fe

невозможна в прямом направлении и протекает только справа налево, т.к.

(Сu 2+ /Cu) = +0,34 В, а (Fe 2+ /Fe) = — 0,44 В, т.е. (Fe 2+ /Fe) < (Сu 2+ /Cu).

В процессе ОВР количество начальных веществ уменьшается, вследствие чего Е окислителя падает, а E восстановителя возрастает. При окончании реакции, т.е. при наступлении химического равновесия потенциалы обоих процессов выравниваются.

  • Если при данных условиях возможно протекание нескольких ОВР, то в первую очередь будет протекать та реакция, у которой разность окислительно-восстановительных потенциалов наибольшая.
  • Пользуясь справочными данными, можно определить ЭДС реакции .

Итак, Как определить ЭДС реакции?

Рассмотрим несколько реакций и определим их ЭДС:

  1. Mg + Fe 2+ = Mg 2+ + Fe
  2. Mg + 2H + = Mg 2+ + H 2
  3. Mg + Cu 2+ = Mg 2+ + Cu

(Mg 2+ /Mg) = — 2,36 В

(2H + /H 2) = 0,00 В

(Cu 2+ /Cu) = +0,34 В

(Fe 2+ /Fe) = — 0,44 В

Чтобы определить ЭДС реакции, нужно найти разность потенциала окислителя и потенциала восстановителя

ЭДС = Е 0 ок — Е 0 восст

  1. ЭДС = — 0,44 — (- 2,36) = 1,92 В
  2. ЭДС = 0,00 — (- 2,36) = 2,36 В
  3. ЭДС = + 0,34 — (- 2,36) = 2,70 В

Все вышеуказанные реакции могут протекать в прямом направлении, т.к. их ЭДС > 0.

Константа равновесия.

Если возникает необходимость определения степени протекания реакции, то можно воспользоваться константой равновесия.

Например, для реакции

Zn + Cu 2+ = Zn 2+ + Cu

Применяя закон действующих масс , можно записать

K = C Zn 2+ /C Cu 2+

Здесь константа равновесия К показывает равновесное соотношение концентраций ионов цинка и меди.

Значение константы равновесия можно вычислить, применив уравнение Нернста

E = + (0,059/ n) lg(C ок / C вос)

Подставим в уравнение значения стандартных потенциалов пар Zn/Zn 2+ и Cu/Cu 2+ , находим

E 0 Zn/ Zn2+ = -0,76 + (0,59/2)lgC Zn / Zn2 и E 0 Cu/ Cu2+ = +0,34 + (0,59/2)lgC Cu / Cu2+

В состоянии равновесия E 0 Zn/ Zn2+ = E 0 Cu/ Cu2+, т.е.

0,76 + (0,59/2)lgC Zn 2 = +0,34 + (0,59/2)lgC Cu 2+ , откуда получаем

(0,59/2)(lgC Zn 2 — lgC Cu 2+) = 0,34 – (-0,76)

lgK = lg (C Zn2+ /C Cu2+) = 2(0,34 – (-0,76))/0,059 = 37,7

Значение константы равновесия показывает, что реакция идет практически до конца, т.е. до того момента, пока концентрация ионов меди не станет в 10 37,7 раз меньше, чем концентрация ионов цинка.

Константа равновесия и окислительно-восстановительный потенциал связаны общей формулой:

lgK = (E 1 0 -E 2 0)n/0,059 , где

K — константа равновесия

E 1 0 и E 2 0 – стандартные потенциалы окислителя и восстановителя соответственно

n – число электронов, отдаваемых восстановителем или принимаемых окислителем.

Если E 1 0 > E 2 0 , то lgK > 0 и K > 1 . Следовательно, реакция протекает в прямом направлении (слева направо) и если разность (E 1 0 — E 2 0) достаточно велика, то она идет практически до конца.

Напротив, если E 1 0 < E 2 0 , то K будет очень мала . Реакция протекает в обратном направлении, т.к. равновесие сильно смещено влево. Если разность (E 1 0 — E 2 0) незначительна, то и K ≈ 1 и данная реакция не идет до конца, если не создать необходимых для этого условий.

Зная значение константы равновесия , не прибегая к опытным данным, можно судить о глубине протекания химической реакции. Следует иметь ввиду, что данные значений стандартных потенциалов не позволяют определить скорость установления равновесия реакции.

По данным таблиц окислительно-восстановительных потенциалов возможно найти значения констант равновесия примерно для 85000 реакций.

Как составить схему гальванического элемента?

  1. ЭДС элемента — величина положительная, т.к. в гальваническом элементе работа производится.
  2. Значение ЭДС гальванической цепи – это сумма скачков потенциалов на границах раздела всех фаз, но, учитывая, что на аноде происходит окисление, то из значения потенциала катода вычитают значение потенциала анода.

Таким образом, при составлении схемы гальванического элемента слева записывают электрод, на котором происходит процесс окисления (анод), а справа – электрод, на котором происходит процесс восстановления (катод).

  1. Граница раздела фаз обозначается одной чертой — |
  2. Электролитный мостик на границе двух проводников обозначается двумя чертами — ||
  3. Растворы, в которые погружен электролитный мостик записываются слева и справа от него (если необходимо, здесь же указывается концентрация растворов). Компоненты одной фазы, при этом записываются через запятую.

Например, составим схему гальванического элемента , в котором осуществляется следующая реакция:

Fe 0 + Cd 2+ = Fe 2+ + Cd 0

В гальваническом элементе анодом является железный электрод, а катодом – кадмиевый.

Анод Fe 0 |Fe 2+ || Cd 2+ |Cd 0 Катод

Типичные задачи с решениями вы найдете .

Категории ,

В каждой окислительно-восстановительной реакции, в том числе в реакции

Zn + CuSO 4 = ZnSO 4 + Cu (1)

участвуют две окислительно-восстановительные пары - восстановитель (Zn) и его окисленная форма (Zn 2+); окислитель (Cu 2+) и его восстановленная форма (Cu). Мерой окислительно-восстановительной способности данной пары является окислительно-восстановительный или электродный потенциал, который обозначают , где Ox – окисленная форма, Red – восстановленная форма (например, , ). Измерить абсолютное значение потенциала невозможно, поэтому измерения осуществляют относительно эталона, например стандартного водородного электрода.

Стандартный водородный электрод состоит из платиновой пластинки, покрытой тонким порошком платины, погруженной в раствор серной кислоты с концентрацией ионов водорода, равной 1 моль/л. Электрод омывают током газообразного водорода под давлением 1,013 · 10 5 Па при температуре 298 К. На поверхности платины протекает обратимая реакция, которую можно представить в виде:

2H + + 2 Û H 2 .

Потенциал такого электрода принимают за нуль: В (размерность потенциала – Вольт).

Стандартные потенциалы измерены или рассчитаны для большого числа окислительно-восстановительных пар (полуреакций) и приведены в таблицах. Например, . Чем больше значение , тем более сильным окислителем является окисленная форма (Оx) данной пары. Чем меньше значение потенциала, тем более сильным восстановителем является восстановленная форма (Red) окислительно-восстановительной пары.

Ряд металлов, расположеных в порядке увеличения их стандартных электродных потенциалов, называют электрохимическим рядом напряжений металлов (рядом активности металлов):

Li Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb H Bi Cu Ag Hg Au

E 0 < 0 E 0 =0 E 0 > 0

Начинается ряд наиболее активными металлами (щелочными), а завершается «благородными», т.е. трудноокисляемыми металлами. Чем левее расположены в ряду металлы, тем более сильными восстановительными свойствами они обладают, они могут вытеснять из растворов солей металлы, стоящие правее. Металлы, расположенные до водорода, вытесняют его из растворов кислот (кроме HNO 3 и H 2 SO 4 конц).

В тех случаях когда система находится в нестандартных условиях, значе-

,

где – потенциал системы при нестандартных условиях, В;

– потенциал системы при стандартных условиях, В;

R – универсальная газовая постоянная (8,31 Дж/моль К);

T – температура, К;

n – число электронов, участвующих в процессе;

F – число Фарадея (96500 К/моль);

А, в – произведение концентраций (моль/л) окисленной и восстановленной форм участников процесса, возведенных в степень стехиометрических коэффициентов.

Концентрации твердых веществ и воды принимают за единицу.

При температуре 298 К, после подстановки численных значений R и F,

уравнение Нернста принимает вид:

. (2)

Так, для полуреакции

Û

уравнение Нернста

Используя значения электродных потенциалов, можно определить направление самопроизвольного протекания окислительно-восстановительной реакции. В ходе ОВР электроны всегда перемещаются от пары, содержащей восстановитель, к паре, содержащей окислитель. Обозначим

Электродный потенциал пары, содержащей окислитель;