Блокинг - генераторы. Электрическая схема блокинг генератора Резонансный блокинг генератор схема

Выполняется он на базе усилительного элемента (например, транзистора) с сильной трансформаторной обратной связью. Чаще всего используют положительную обратную связь.

Преимущества и недостатки

Достоинством таких генераторов считается относительная простота, возможность подсоединения нагрузки через трансформатор. Форма генерируемых импульсов приближается к прямоугольной, скважность достигает десятков тысяч, длительность - сотен микросекунд. Предельная частота повторений импульсов достигает нескольких сотен кГц. Емкость колебательных контуров у таких устройств небольшая, обуславливается межвитковыми емкостями и, конечно же, емкостью монтажа. Благодаря этим качествам блокинг-генератор нашел широкое применение в производстве: в устройствах автоматики, регулирования и промышленной электроники.

Недостатком этих генераторов является зависимость частоты от изменения напряжения питания. Стабильность чем у мультивибратора, составляет всего 5-10 процентов.

Блокинг-генератор, собранный по схеме с положительной сеткой или с резонансным контуром, который настроен на частоту повтора импульсов, с фиксирующим диодом, имеет довольно высокую стабильность колебаний. Нестабильность частоты в таких схемах менее одного процента.

Существует множество схем реализации таких генераторов: ламповые транзисторные с базовым смещением, транзисторные с эмиттерной связью, с положительной сеткой, с усиленным каскадом, на полевых транзисторах и другие.

На фото изображен блокинг-генератор на

Наибольшую популярность получили устройства на обычных транзисторах. В таких устройствах обычно используют Генератор может работать в заторможенном режиме, он легко синхронизируется внешним сигналом.

Блокинг-генератор, принцип работы

Работа схемы разделяется на несколько этапов. Этап первый: происходит отпирание транзистора при поступлении импульса на эмиттер. Прибор начинает работать. Когда на базу транзистора поступает отпирающий ток, он вызывает накопление заряда, а также возрастание коллекторного тока. Через резистор осуществляемая обмотками импульсного трансформатора, возбуждает лавинообразный процесс нарастания базового, коллекторного токов и тока нагрузки. При этом уменьшается разность потенциалов между эмиттером и коллектором транзистора, когда она достигнет нуля, прибор переходит в состояние насыщения. Этап второй: пренебрегая сопротивлением первичной обмотки, считаем, что на обмотку подано постоянное напряжение питания. В результате на остальных обмотках трансформатора напряжение также неизменно. Характер изменения токов схемы определяется свойством цепей, которые включены последовательно с вторичными обмотками, а также со свойствами сердечника трансформатора. Например, при активной нагрузке ток будет постоянным. Ток на базе транзистора постоянный, но начинает уменьшаться при заряде конденсатора. Коллекторный ток определяется суммой тока намагничивания и переходных токов обмоток.

Ток намагничивания возрастает, характер роста определяется петлей гистерезиса материала сердечника. Вследствие этого увеличивается и ток коллектора. Это приводит к тому, что транзистор выходит из состояния насыщения, сформирована вершина импульса. Коллекторный ток снова становится зависимым от величины базового заряда, а базовый ток при этом начинает лавинообразно уменьшаться. Транзистор запирается, формируется срез импульса. При запирании прибора блокинг-генератор начинает восстанавливаться в исходное состояние.

В статье Вам будут предложены , но, для начала, немного теории.
Есть один распространенный тип генераторов, в котором всеми событиями управляет заряд - разряд конденсатора. Это блокинг-генератор , его упрощенная схема показана на рисунке. Знакомство с работой блокинг-генератора начнем с того момента, когда включено питающее напряжение и в коллекторной цепи появился ток. Нарастающий коллекторный ток сразу через трансформатор наведет напряжение в базовой цепи. Причем напряжение такой полярности (это зависит от того, как включена обмотка II), которая способствует еще большему открыванию транзистора. Транзистор открывается лавинообразно до полного насыщения (напряжение на нагрузке максимально, на самом коллекторе около нуля), а ток положительной обратной связи заряжает конденсатор Сд и при этом поддерживает транзистор в открытом состоянии. Но после того, как этот конденсатор полностью зарядится до напряжения на обмотке U ц, ток через него прекратится и транзистор скачком закроется постоянным напряжением на конденсаторе, которое имеет положительную полярность относительно базы. Теперь напряжение Uс на конденсаторе Сg начинает постепенно уменьшаться, он разряжается через резистор Re. И вот наступает такой момент, когда конденсатор уже не может противодействовать «минусу», поступающему на базу через Rq: транзистор мгновенно открывается, в коллекторной цепи появляется ток и все начинается сначала - опять рывок коллекторного тока, опять заряд конденсатора, опять он закрывает транзистор, постепенный разряд конденсатора и в какой-то момент снова открывание транзистора и очередной рывок коллекторного тока…

Так в блокинг-генераторе транзистор, разумеется с помощью трансформатора и разрядной RС-цепочки, периодически сам себя открывает и закрывает, генерирует меняющееся напряжение. Частота этого напряжения зависит от того, сколько времени проходит от одного отпирания транзистора до следующего, а значит, главным образом зависит от постоянной времени разрядной цепи, от сопротивления Rq и емкости С б. Чем они больше, тем медленнее идет процесс разряда, тем ниже частота.

5. Блокинг-генератор . Частоту его сигнала можно менять, изменяя Rl или С1. На основе этого генератора можно сделать простейший электромузыкальный инструмент или индикатор сопротивления. Так, например, если с помощью двух электродов включить вместо R1 некоторый объем воды, то звуковой тон будет меняться в зависимости от уровня воды или, например, ее солености. В качестве Tp 1 можно взять БТК (блокинг-трансформатор кадровый) от любого телевизора. Выходное сопротивление такого генератора велико, его нужно подключать к каскаду с большим входным сопротивлением.

В этой статье я поведаю вам о том, что такое блокинг-генератор .

Блокинг-генератор - это генератор импульсов сравнительно небольшой длительности и большого периода. Он работает благодаря трансформаторной обратной связи . Из-за простоты блокинг-генератор широко применяют в компактных преобразователях напряжения (например в каждой второй схеме электронной зажигалки можно встретить эту схему).

Вот это блокинг-генератор(одна из многих вариаций этой схемы):

Как видите, он реально прост в сборке. Самая сложная часть в нем - это трансформатор.Но обо всем по порядку.

1) Принцип работы

Сначала обмотка 2 работает как "резистор", т.е. через нее и резистор протекает ток, который начинает открывать транзистор.Открывание транзистора приводит к появлению тока в обмотке 1, а это в свою очередь приводит к появлению напряжения на обмотке 2, т.е. напряжение на базе транзистора увеличивается еще, он открывается еще больше, и так происходит до тех пор, пока сердечник или транзистор не войдет в насыщение. Когда это произошло, ток через обмотку 1 начинает уменьшаться, следовательно напряжение на обмотке 2 меняет полярность, что приводит к закрыванию транзистора.Все, цикл замкнулся!

2) Детали

Трансформатор обмотка 1 обычно в 2 раза больше обмотки 2, а число витков и диаметр провода подбираются в зависимости от напряжения на обмотке 3 и тока через нее.

Резистор обычно берут в пределах 1кОм - 4,7кОм.

Транзистор подойдет почти любой.

3) Тест

Сначала соберем базовую схему генератора. Трансформатор вот такой от балласта энергосберегающей лампы:

На нем я намотал сначала обмотку 2 (18 витков проводом 0,4мм)

Изолировал ее (подойдет обычная изолента)

А потом намотал и обмотку 1 (36 витков тем же проводом, что и 2-ую)

И наконец, вставил сердечник и зафиксировал его той же изолентой

На этом трансформатор готов.

Транзистор я выбрал мощный: кт805, потому что в обмотке всего 36 витков не самого тонкого провода(малое сопротивление).

Резистор 2,2кОм.

Вот что у меня в итоге получилось:

Питание, как вы поняли, я буду брать от кроны.

Итак, с транзистором кт805, резистором 2,2кОм и обмоткой 1 в 2 раза больше обмотки 2, осциллограмма напряжения между коллектором и эмиттером выглядит так:

Амплитуда 60В, частота около 170кГц.

Теперь поставим резистор на 4,7кОм. Осциллограмма выглядит так:

Амплитуда около 10В, частота такая же.

Поставим теперь резистор 1кОм:

Амплитуда 120В, частота около 140кГц.

Теперь поставим обратно резистор 2,2кОм, и поменяем местами обмотки:

Амплитуда 80В, частота около 250кГц.

4) Вывод

Чем больше коэффициент обратной связи, тем быстрее нарастает сигнал, и частота выше.(чем меньше резистор, и больше соотношение число витков обмотки 2/число витков обмотки 1, тем больше коэффициент ОС).Еще на ОС влияет коэффициент усиления транзистора.

5) Практическая польза

Вы наверняка заметили, что я ни слова не сказал про обмотку 3. Она нужна для того, чтобы снять выходное напряжение.

Давайте посмотрим что будет, если намотать в обмотку 3 100 витков провода 0,08мм:

Сначала нам, конечно, нужно домотать трансформатор. Изолируем в прошлом последний слой:

Теперь наматываем 100 витков провода 0,08. Собираем сердечник. НА ВЫХОД ЦЕПЛЯЕМ ДИОД (можно любой с обратным напряжением не менее 200В. Например я взял дешевый и распространенный 1n4007). Спаиваем схему:

Диод нужен для отсекания отрицательных выбросов. Смотрим осциллограмму на выходе:

Постоянная составляющая 50В, импульсы амплитудой 50В. Чтобы убрать импульсную составляющую, поставим конденсатор на выходе. Подойдет 0,1мкФ:

Осциллограма:

Постоянное напряжение амплитудой 100В.

При приближении:

Небольшие колебания амплитудой 50мВ.

И наконец, полная схема:

Если генерации нет, впаяйте параллельно резистору конденсатор на пару микрофарад.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Биполярный транзистор

КТ805А

1 В блокнот
Выпрямительный диод

1N4007

1 В блокнот
Резистор

2.2 кОм

1

Схема, устройство блокинг генератора.

Транзистор VT1 - выбор транзистора зависит от применения блокинг генератора. Решающими факторами являются максимально допустимое напряжение коллектор-эмиттер, максимальный ток коллектора и максимальная рассеиваемая мощность.

Вашему вниманию подборка материалов:

Диод VD1 - защищает переход база - эмиттер транзистора от высокого напряжения обратной полярности. Имеет смысл применять диод, рассчитанный на ток , равный отношению напряжения на обмотке 1 к сопротивлению резистора R2 .

Диод VD2 - Участвует в отводе тока размагничивания. Рассчитывая трансформатор, Вы вычислите ток намагничивания. Диод должен быть рассчитан на ток, равный току намагничивания, поделить на число витков в обмотке 3, умножить на число витков в обмотке 2. [Максимальное напряжение на диоде VD2] = [Напряжение питания ] * (1 + [Число витков обмотки 3 ] / [Число витков обмотки 2 ])

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!

Электрическая схема блокинг генератора на одном транзисторе с описанием принципа работы для сборки своими руками. Транзистор может быть биполярным или полевым. Изобрели блокинг в ту пору, когда еще не было микросхем, но схема вызывает интерес до сих пор.

Блокинг генератор - автогенератор с сильной трансформаторной положительной обратной связью, предназначенный для генерирования кратковременных импульсов с большим отношением периода к длительности импульса, т.е. с большой скважностью импульсов. Частота блокинг генератора может составлять от нескольких Герц до сотен КГц.

Схема блокинг-генератора и временные диаграммы работы показана на вкладке (кликабельно). Обмотка связи подключена к переходу эмиттер-база транзистора VT последовательно через конденсатор С. При включении питания схемы небольшое нарастание коллекторного тока через обмотку связи вызывает появление и рост базового тока. Этот процесс лавинообразный и приводит к переходу транзистора в состояние насыщения.

Этим же током конденсатор заряжается, тем самым уменьшая напряжение база-эмиттер. При достижении равенства напряжения зарядки конденсатора напряжению на обмотке связи ток базы и соответственно ток коллектора резко спадают до нуля. В выходной обмотке формируется почти прямоугольный импульс напряжения.

Поскольку, с этого момента напряжение обратной связи почти нулевое, напряжение отрицательной полярности конденсатора С прикладывается к переходу база-эмиттер и переводит транзистор в состояние отсечки. Далее начинается процесс разряда конденсатора С экспоненциально через R от источника питания. При достижении напряжения открывания, начинается лавинообразный рост тока транзистора и формирование нового импульса, процесс становиться периодическим.

Транзистор может быть любым с достаточно высоким коэффициентом усиления. Трансформатор обычно наматывается на ферритовом кольце. Коллекторная обмотка содержит 30-50 витков провода. Обмотка связи 3-5 витков. Чем меньше размеры кольца и ниже планируемая частота генерации, тем больше требуется витков. Если используется полевой транзистор, обмотка связи содержит столько же витков сколько и возбуждающая обмотка, поскольку для управления ключевыми полевым транзистором требуется напряжение от 4 до 20 Вольт.

Транзистор генератора необходимо защитить от выбросов ОЭДС. Если транзистор полевой, достаточно поставить диод между затвором и плюсом источника питания. В таком варианте импульс на стоке будет срезаться на уровне напряжения ИП плюс падение на диоде (0,5 - 1 В). От перенапряжения на стоке полевые транзисторы обычно защищены встроенными диодами.

В простейшем случае можно обойтись без конденсатора. В таком варианте переключение блокинг генератора происходит при насыщении кольца. Упрощенная схема может быть использована при низковольтном питании и малых размерах кольца. КПД схемы достаточно низкий.

Частота блокинг генератора сильно зависит от питающего напряжения. В этой связи лучше использовать генераторы импульсов на микросхемах, тем более что не потребуется мотать обмотку связи. Блокинг имеет смысл использовать в случае когда напряжение источника питания не превышает нескольких вольт, например при питании от 1-3 батареек. Если использовать германиевый транзистор, возможна работы схемы при разрядке батареек до 0,5 В.