У всех ли рыб есть плавательный пузырь? Описание плавательного воздушного пузыря у рыб Развитие и строение гидростатического органа.

Рассказа о плавательном пузыре речь в основном шла о его положении относительно кишечника у разных групп рыб, а также о путях возможной эволюции от первичного вентрального легкого древних рыб к настоящему дорзальному плавательному пузырю рыб современных. Сегодня мы более подробно рассмотрим внутреннее устройство этого органа и еще раз вернемся к разнообразию его строения.

Ранее мы отметили, что в эволюции рыб от предковых (зачастую примитивных) к современным более сложно устроенным формам наблюдается тенденция, во-первых, к потере связи плавательного пузыря с кишечником и, во-вторых, к общему усложнению его строения. Действительно, наиболее молодые таксоны являются, как правило, закрытопузырными, в то время как у более старших (имеющих более раннее эволюционное происхождение) наблюдается открытопузырность.

Схема строения плавательного пузыря рыб

Переход от открытопузырности к закрытопузырности проходил в эволюции посредством постепенного утоньшения и удлинения воздушного канала и смещения места его соединения с пищеварительным трактом от глотки в задние отделы кишечника. Так, у современных открытопузырных рыб этот канал длинный и узкий, как, например, у лососевых, и открывается за желудком, а у панцирной щуки Lepisosteus - представителя одной из древних групп - он короткий и широкий, и открывается в пищевод. Такое его "переднее" положение укорачивает путь в плавательный пузырь для заглатываемого с поверхности воды воздуха и обеспечивает дыхательную функцию.

Принципы работы плавательного пузыря

Вначале поговорим о принципе работы плавательного пузыря как гидростатического органа. Этот принцип прост: изменяя объем плавательного пузыря, рыба изменяет общую плотность тела, и как следствие меняется и ее плавучесть. Как же происходит изменение объема плавательного пузыря? Первые исследователи считали, что это осуществляется только за счет окружающей плавательный пузырь мускулатуры, работа которой приводит к его сжиманию или растягиванию, что в свою очередь выгоняет воздух из пузыря или наоборот нагнетает его внутрь. Однако это не верно - изменение объема плавательного пузыря исключительно за счет работы мускулатуры свойственно лишь немногим примитивным мелководным формам. У подавляющего большинства рыб для этого используются специализированные внутренние структуры, расположенные в самом пузыре, в то время как мускулатура задействуется в крайних случаях. Эти структуры в зависимости от продвинутости таксона могут быть выражены в разной степени, но при этом всегда различают два их типа - красное тело и овал. Фактически это две зоны в оболочке плавательного пузыря, выполняющие функции синтеза (красное тело) и удаления (овал) газов. Функционирование этих зон связано с обильным кровообращением, так как кровь является для большинства рыб основным, а в случае закрытопузырных рыб единственным транспортным "каналом" для газов при наполнении и опорожнении плавательного пузыря.

Теперь давайте немного подробнее рассмотрим строение этих двух "рабочих" зон.

Строение красного тела

Начнем с красного тела (лат. corpus ruber) , которое по сути является газовой железой (а в англоязычной литературе оно преимущественно называется именно так), служащей для «закачки» газов из крови в полость плавательного пузыря. Оно представляет собой скопление секреторных клеток (вероятно эпителиального происхождения) и капилляров. У разных групп рыб красное тело может быть выражено неодинаково – оно может покрывать либо всю поверхность пузыря, либо только небольшую его часть, иметь лопастную структуру или представлять собой однородное образование, быть выстланным многослойным или однослойным эпителием.

Красное тело внешне выглядит как густое скопление копилляров

Сейчас я не стану останавливаться на подробностях работы всей системы, но для дальнейшего понимания строения красного тела необходимо отметить, что попадание газов напрямую из крови в плавательный пузырь путем простой диффузии невозможно из-за разницы их парциальных давлений. Для преодоления этой разницы как раз и необходимы секреторные клетки, которые за счет происходящих в них химических реакций обеспечивают транспорт газов в нужном направлении. Для синтеза необходимого объема газов секреторные клетки должны соответствующим образом снабжаться кровью, которая как раз и является источником этих газов. Поэтому важнейшей составляющей красного тела является скопление капилляров, образующих густую сеть в стенке плавательного пузыря и получившее довольно смешное и кажущееся не совсем научным название – чудесная сеть от латинского rete mirabile. Как уже отмечалось выше, у разных видов рыб чудесная сеть, как неотъемлемая часть красного тела, может быть развита в разной степени, однако, если имеется, то построена по одному универсальному принципу. Этот принцип заключается в очень близком расположении капилляров, приносящих кровь к секреторным клеткам и уносящих ее обратно. По этим сближенным артериальным и венозным капиллярам происходит параллельный (но разнонаправленный) транспорт крови, что обеспечивает сложный механизм нагнетания парциального давления газов в приносящих капиллярах и саму возможность "закачки" газов внутрь плавательного пузыря. Подробнее об этом я попробую рассказать в отдельном посте, пока же предлагаю только взглянуть на рисунок ниже, на котором показана микроструктура чудесной сети и пути газов в разных ее частях.

Микроструктура чудесной сети и разность парциальных давлений газов в разных ее участках.

Стрелками показано направление газов и кровотока.

Два типа организации чудесной сети

Говоря о строении чудесной сети, нельзя не упомянуть о том, что существует два типа организации параллельных приносящих и выносящих капилляров. Чудесная сеть может быть биполярной, когда две микросети капилляров расположены последовательно, или униполярной, когда имеется лишь одна микросеть капилляров, непосредственно примыкающая к секреторным клеткам. Эти варианты строения показаны на рисунке ниже. У большинства рыб чудесная сеть построена по униполярному типу, в то время как у угрей она биполярна. Различия в строении чудесной сети проявляются также и в том, что число пар капилляров (1 приносящий + 1 выносящий) в микросети может варьировать у разных видов от единиц до нескольких тысяч.

Униполярный и биполярный типы строения чудесной сети

Строение овала

Теперь перейдем к строению овала, являющегося структурой, ответственной за транспорт газов из плавательного пузыря в кровь. Овал представляет собой участок стенки плавательного пузыря, обильно снабжающийся сосудами, также как и в случае с красным телом, образующими густую сеть. Структура этой сети, однако, гораздо проще, так как механизм обратного транспорта газов из плавательного пузыря в кровь значительно проще. Из-за разности парциальных давлений газы проникают в кровь по принципу прямой диффузии, поэтому для обеспечения этого процесса не требуются никакие секреторные клетки и организация параллельного транспорта в капиллярах. Скорость этой диффузии, как правило, очень высокая и ограничивается, прежде всего, скоростью кровотока - кровь попросту не успевает уносить растворенные газы. Кроме того, процесс диффузии связан с площадью, через которую она происходит, и диаметром просвета между резорбирующей и секреторной частями, который, как уже было сказано, может регулироваться с помощью сфинктера.

Капилляры овала (показаны стрелкой)

Разнообразие строения плавательного пузыря костистых рыб

В завершении, как я и обещал, вернемся к разнообразию строения плавательного пузыря у разных групп рыб. Потеря связи с кишечником, как уже было сказано, - не единственная тенденция в эволюции плавательного пузыря. От примитивных древних групп к наиболее современным молодым таксонам мы наблюдаем постепенное усложнение его строения. Это усложнение заключается прежде всего в появлении различных зон, связанных с выполнением тех или иных специальных функций. Гидростатическую функцию обеспечивают две таких зоны - это уже описанные выше красное тело и овал. Их обособление у разных рыб может быть организовано по-разному, но в общем сводится к разделению плавательного пузыря на несколько камер. Как правило, таких камер бывает две - в одной происходит синтез газов, а в другой их поглощение. Разнообразие строения и расположения камер относительно друг друга у костистых рыб очень велико. Некоторые примеры показаны на рисунке ниже.

При описании плавательного пузыря часто отдельно упоминают плавательный пузырь угрей родов Anguilla и Conger (рисунок D). Действительно, в его строении есть ряд интересных особенностей. Имея связь с кишечником, он, однако, функционирует как плавательный пузырь закрытого типа. В чем же это проявляется? Дело в том, что воздушный канал у угрей этих родов расширен и функционально соответствует зоне овала - через его стенки происходит резорбция газов в кровь, синтез же газов осуществляется в единственной крупной вытянутой камере, снабженной мощной газовой железой. Помимо этого, с плавательным пузырем закрытого типа его сближает особенность кровообращения и состав наполняющих газов.

Говоря о разнообразии строения плавательного пузыря и особенностях его связи с внешней средой нельзя не упомянуть о плавательном пузыре сельдевых (сем. Clupeidae). Особенности его строения связаны с особенностями биологии этих рыб, которым свойственны значительные и резкие вертикальные миграции. Так, типичный представитель сельдевых тихоокеанская сельдь Clupea pallasii совершает подобные миграции из глубин моря в поверхностные слои вслед за планктоном, которым она питается. При таких перемещениях объем газа в плавательном пузыре резко увеличивается за счет снижения внешнего давления, что в обычном случае могло бы привести к повреждению тканей рыбы (нечто подобное мы наблюдаем при ловле рыб с глубины - часто такие поимки сопровождаются выпячиванием плавательного пузыря через рот рыбы). Чтобы такого не происходило, в процессе эволюции сельди приобрели дополнительное отверстие, расположенное в районе анального и соединяющее плавательный пузырь с внешней средой. Через него и происходит "стравливание" лишнего воздуха, причем этот процесс может контролироваться самой рыбой с помощью имеющегося здесь сфинктера.

Подробнее о функционировании плавательного пузыря я расскажу в одном из следующих постов.

Эта удивительная подушка Гильзин Карл Александрович

Зачем рыбе пузырь?

Зачем рыбе пузырь?

В Латвии есть озеро Илзиня, ничем, кажется, не выделяющееся из множества прибалтийских озер, если бы не расположенный на нем остров. Озерными островами тоже удивить трудно, но этот небольшой остров действительно особенный: он движется. Почему покрытый кустарником и травой остров не тонет? Что превращает его в своеобразный корабль? Воздушная подушка. Остров состоит из торфяного грунта, некогда оторвавшегося от дна, и воздух, а также метан и другие газы, образующиеся при гниении, создают подушку.

Плавающие острова есть на Оби, в Рыбинском море и в других местах.

Как и следовало ожидать, исключительно велика роль плавающей воздушной подушки в живой природе. Ведь столько разнообразных существ живет в воде или так или иначе связаны с ней.

Воздушная подушка рыб - плавательный пузырь - доставляет им немало хлопот: то накачивай пузырь воздухом, то выпускай его. Но зато сколько пользы он приносит!

Пузырь нужен рыбе главным образом для того, чтобы она могла плавать на разных глубинах - ведь давление воды с увеличением глубины увеличивается. Держаться в толще воды без дополнительных движений рыбе и помогает плавательный пузырь. Меняя количество газов в нем, рыба выравнивает давление в пузыре при изменении давления окружающей воды.

Плавательный пузырь рыбы при ее подъеме и спуске то автоматически пополняется газами, которые рыба извлекает из воды или из собственных тканей, то освобождается от них. Эти газы обычно близки по составу к воздуху, но иногда довольно сильно отличаются от него.

Если пузырь соединен с кишечником (например, у щуки, сельди, лосося, сома), то газы выходят через рот в воду. Когда всплывает стая подобных рыб, то сначала из глубины появляется множество пузырьков воздуха. Рыбаки в Адриатическом море говорят: «Пена появилась - сейчас появятся и сардины!»

В случае герметичного пузыря (например, у кефали, наваги, трески) газы сначала поступают в кровь, а уж потом через жабры выводятся в воду. Это, конечно, происходит медленнее, и такие рыбы всплывают не столь быстро. Если вытащить кефаль с большой глубины, то пузырь, давление в котором еще велико, распирает тело рыбы, она раздувается и сама становится вроде пузыря. У акул, которым приходится часто и резко менять глубину плавания, например, в погоне за добычей, плавательного пузыря вообще нет - им он мешал бы.

Есть у плавательного пузыря еще одна важная работа - он измеряет давление окружающей воды. Рыбе нужно знать, на какой глубине она находится - у каждого вида рыб свои излюбленные глубины, где больше пищи и приятнее условия. С помощью пузыря рыба воспринимает самые незначительные колебания давления, например изменение атмосферного давления перед грозой.

Большинство рыб использует плавательный пузырь и как орган слуха. Они слушают сначала животом: пузырь усиливает даже слабые звуки, распространяющиеся в воде, и уже потом они передаются во внутреннее ухо, в голову рыбы.

И пузырем же многие рыбы разговаривают. Старая поговорка «Нем как рыба» уже давно опровергнута наукой: рыбы весьма болтливы. Большинство рыб, оказывается, чревовещатели: они «разговаривают», не открывая рта! Пузырь служит как бы барабаном - рыба ударяет по нему то особыми мышцами, то плавниками, а то и специальной косточкой, вроде палочки барабанщика.

Чем больше барабан, тем басовитей его «голос». Маленькие рыбки попискивают, а большие-басят. И вот что странно: рыбы-самки обычно «беседуют» реже и тише, у них барабанные мышцы развиты слабее. Так что, по одному остроумному замечанию, в отличие от людей, у судаков «судачат» в основном отцы семейства…

Не все издаваемые рыбами звуки исходят из пузыря. У некоторых рыб пузыря вообще нет, а «разговаривают» они вовсю.

Пока никто не знает, почему и как эти рыбы издают звуки: бычки рычат и квакают, белуги ревут…

И еще одно важное свойство пузыря не так для самой рыбы - хозяйки пузыря, как для других рыб. Когда рыба гибнет - попадает в зубы хищнику, в сеть или на крючок рыболова, то она извивается, трепещет, и ее пузырь, сильно сжимаясь, издает как бы крик боли, предупреждающий других рыб об опасности. Рыба горбыль, например, кричит так, что за двести метров слышно.

Пузырь служит для издавания звуков не только у рыб. Есть подобный пузырь - он так и называется «голосовым» - у самцов лягушек. Если это наземная лягушка, то пузырь находится внутри тела, если водяная, то снаружи, по бокам головы. Ну и страшилищем выглядит лягушка, когда эти пузыри надуваются!

Пузырь некоторым рыбам служит и для дыхания: они заглатывают в него атмосферный воздух, хотя, как и все остальные рыбы, они жабрами извлекают кислород, растворенный в воде. И если такая рыба не успеет наполнить свой пузырь воздухом, когда высунет голову из воды (она делает это регулярно, обычно через один - три часа), то она утонет.

«Запасенным» воздухом дышат не только рыбы, но и некоторые насекомые. Например, жук-плавунец запасает атмосферный воздух в дыхательных трахеях и специальных пузырьках под надкрыльями и дышит этим воздухом под водой. Природа позаботилась и о том, чтобы жук мог жить под водой долго - например, зимой подо льдом. Запасенный жуком пузырек воздуха, покрывающий его дыхальца, служит своеобразными жабрами: по мере расходования кислород поступает в пузырек из окружающей воды, а углекислый газ, наоборот, отводится в воду - ведь он растворяется в воде в тридцать раз лучше, чем кислород.

Из книги Тайны лунной гонки автора Караш Юрий Юрьевич

Зачем Соединенным Штатам нужно было сотрудничество с СССР? Вопрос не праздный. Разве американцы в меньшей степени, чем русские, были озабочены возможностью «перетекания» своих современных технологий двойного использования в руки тех, кто мог обратить их против

Из книги Засады, подставы и другие хитрости инспекторов ГИБДД автора Кузьмин Сергей

Зачем дальним моргали, уважаемый водитель? Для чего водители встречных автомобилей двумя дальними моргают, мы знаем. Знают это и сотрудники ГИБДД. И ох как им это не нравится! В общем-то и сделать они ничего не могут, но все- таки пытаются. Так же как водитель предупреждает

Из книги Покорители земных недр автора Блинов Геннадий Александрович

Зачем нужно бурение Где оно используется и применяется? Недаром мы начали с геологической эмблемы. Действительно, геология, а точнее геологоразведка, является самой мощной, самой развитой ветвью раскидистого бурового дерева (рис. 5). Собственно в геологии это дерево

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Зачем создавать роботов? Применение роботов оказалось совершенно необходимым для многих производств, прежде всего потому, что стоимость «труда» робота оказалось значительно ниже стоимости такой же операции, производимой работником – человеком. Более того, робота

Из книги Феномен науки [Кибернетический подход к эволюции] автора Турчин Валентин Фёдорович

3.4. Зачем нужны ассоциации представлений Эти предварительные соображения нам потребовались для того, чтобы лучше уяснить понятие ассоциации и связь между функциональным описанием через ассоциации и структурным - через классификаторы.Поскольку с каждым

Из книги Об изобретательстве понятным языком и на интересных примерах автора Соколов Дмитрий Юрьевич

Глава 1 Что такое изобретение, и зачем они нужны Jus utendi et abutendi. Право пользования по своему усмотрению. (Римское право) Условия патентоспособности изобретения описаны в ст. 1350 четвертой части Гражданского кодекса РФ. Я не буду повторять эту статью, а постараюсь ее «на

Из книги Электронные фокусы для любознательных детей автора Кашкаров Андрей Петрович

1.5.1. Зачем нужны светодиоды? Светодиоды заменяют большинство из бытовых осветительных приборов. Причем заменяют эффективно по нескольким причинам.Во-первых, светодиод очень экономичен. Так один, даже сверх-яркий светодиод с силой света до 5 кД (Кандел) потребляет всего

Из книги 100 великих достижений в мире техники автора Зигуненко Станислав Николаевич

Зачем трактору «тапочки»? Колесо или гусеница? Такая альтернатива уже давно стоит перед специалистами сельскохозяйственного тракторостроения. Дело в том, что нынешние тяжелые трактора изрядно калечат почву своими гусеницами, прикатывают ее, будто дорогу. И порою даже

Из книги Могло быть и хуже… автора Кларксон Джереми

Зачем сеть на картофельном поле? Есть картошку многие любят, а вот убирать… Нелегкая это работа – нагнуться за каждым клубнем, поднять его и опустить в ведро. За день так намаешься, что уж и картошечке на столе не рад. А нельзя ли как-то облегчить уборку картофеля? Конечно,

Из книги автора

Зачем паспорт корове? Зоологи и ветеринары научились различать телят крупного рогатого скота по отпечаткам их носа. Оказывается, они столь же индивидуальны, как и отпечатки пальцев у людей. Но зачем вообще необходимо различать животных, скажем, на крупной ферме? Ведь все

Из книги автора

Зачем ткани интеллект? Некогда всемирно известный модельер В. Зайцев начал свою карьеру дизайнера с того, что предложил выпускать телогрейки, украшенные цветами и разными узорами. Недавняя международная специализированная выставка производственной одежды

Из книги автора

Ferrari 4 – зачем? Ferrari FF Было обычное субботнее утро, дороги были переполнены любителями ремонта своими руками, которые вместе с семьями направлялись в соответствующие местные магазины. Когда спешишь, это не самое лучшее, что может случиться: человек, который

Материал из Википедии - свободной энциклопедии

Пла́вательный пузы́рь - заполненный газом вырост передней части кишечника, основной функцией которого является обеспечение плавучести рыб. Плавательный пузырь может выполнять гидростатические, дыхательные и звукообразовательные функции.

У костных рыб отсутствует у парусниковых , а также у ведущих донный образ жизни и глубоководных рыб. У последних плавучесть обеспечивается в основном за счет жира благодаря его несжимаемости или за счёт более низкой плотности тела рыбы, как например, у анциструсов , голомянок и рыбы-капли . В процессе эволюции одна из структур, подобных плавательному пузырю, преобразовалась в лёгкие наземных позвоночных . Наиболее близкий вариант к легким четвероногих, однако, демонстрируют не костистые, а костные (многопер , имеющий непарные ячеистые легкие - нижний вырост глотки) и двоякодышащие рыбы (у трех современных представителей наблюдается разнообразие в строении легких). Ведь легкие наземных позвоночных произошли от нижнего выроста глотки, а плавательный пузырь костистых - от верхнего выроста пищевода.

Плавательный пузырь у разных групп рыб

Плавательный пузырь имеют не все группы рыб, а в тех группах, для которых он является свойственным, имеются виды, утратившие его в ходе эволюции. Основные современные крупные таксоны рыб в отношении наличия либо отсутствия плавательного пузыря и его функций характеризуются следующим образом:

Круглоротые и хрящевые - плавательный пузырь отсутствует. Целакантообразные (латимерия) - плавательный пузырь редуцирован. Двоякодышащие , многоперовые - имеется, орган дыхания. Хрящевые ганоиды (осетрообразные) - имеется, гидростатический орган. Костные ганоиды - имеется, орган дыхания. Костистые рыбы - имеется, у некоторых редуцирован, гидростатический орган, у небольшого числа видов является органом дыхания.

Описание

В процессе эмбрионального развития рыб плавательный пузырь возникает как спинной вырост кишечной трубки и располагается под позвоночником . В процессе дальнейшего развития канал, соединяющий плавательный пузырь с пищеводом, может исчезнуть. В зависимости от наличия или отсутствия такого канала рыбы делятся на открыто- и закрытопузырных. У открытопузырных рыб (физостом ) плавательный пузырь в течение всей жизни связан с кишечником воздушным протоком, через который газы поступают внутрь и выводятся наружу. Такие рыбы могут заглатывать воздух и таким образом контролировать объём плавательного пузыря. К открытопузырным относятся карпы , сельди , осетровые и другие. У взрослых закрытопузырных рыб (физоклистов ) воздушный проток зарастает, а газы выделяются и поглощаются через красное тело - густое сплетение кровеносных капилляров на внутренней стенке плавательного пузыря.

Гидростатическая функция

Основная функция плавательного пузыря у рыбы - гидростатическая. Он помогает рыбе оставаться на определённой глубине, где вес вытесняемой рыбой воды равен весу самой рыбы. Когда же рыба активно опускается ниже этого уровня, тело её, испытывая большее наружное давление со стороны воды, сжимается, сдавливая плавательный пузырь. При этом вес вытесняемого объёма воды уменьшается и становится меньше веса рыбы и рыба падает вниз. Чем ниже она опускается, тем сильнее становится давление воды, тем больше сдавливается тело рыбы и тем стремительнее продолжается её падение. Наоборот, при всплытии ближе к поверхности газ в плавательном пузыре расширяется и уменьшает удельный вес рыбы, что ещё больше выталкивает рыбу к поверхности.

Таким образом, основное назначение плавательного пузыря - обеспечивать нулевую плавучесть в зоне обычного обитания рыбы, где ей не надо тратить энергию на поддержание тела на этой глубине. Например,

Рыбы - это огромная группа позвоночных животных, обитающих в воде. Их главной особенностью является жаберное дыхание. Для перемещения в жидкой среде эти животные используют самые разнообразные приспособления. Плавательный пузырь - важнейший гидростатический орган, регулирующий глубину погружения, а также участвующий в дыхании и генерации звуков.

Плавательный пузырь - важнейший гидростатический орган, регулирующий глубину погружения рыб

Развитие и строение гидростатического органа

Формирование рыбного пузыря начинается на ранней стадии развития. Один из отделов прямой кишки, видоизменённый в своеобразный вырост, со временем заполняется газом. Для этого мальки всплывают и захватывают воздух ртом. Со временем связь пузыря с пищеводом у части рыб утрачивается.

Рыбы, имеющие воздушную камеру, делятся на два типа:

  1. Открытопузырные способны контролировать наполнение при помощи специального канала, имеющего сообщение с кишечником. Они могут быстрее всплывать и погружаться, а при необходимости захватывают воздух ртом из атмосферы. К этому типу относится бо́льшая часть костных рыб, например: карп и щука.
  2. Закрытопузырные имеют герметичную камеру, не имеющую прямого сообщения с внешним миром. Уровень газа контролируется с помощью кровеносной системы. Воздушный пузырь у рыб оплетён сетью капилляров (красное тело), которые способны медленно поглощать или отдавать воздух. Представители этого типа - треска, окунь. Не могут позволить себе быстрого изменения глубины. При мгновенном извлечении из воды такую рыбу сильно раздувает.

Воздушный пузырь у рыб представляет собой полость с прозрачными эластичными стенками.

По своему строению различают:

  • однокамерный;
  • двухкамерный;
  • трехкамерный.

Как правило, у большей части рыб этот орган один, но у двоякодышащих он парный. Глубинные виды могут обходиться очень маленьким пузырём.

Функции плавательного пузыря

Плавательный пузырь в теле рыбы является уникальным и многофункциональным органом. Он заметно облегчает жизнь и экономит массу энергии.

Главная, но не единственная функция - это гидростатический эффект. Для зависания на определённой глубине необходимо, чтобы плотность тела соответствовала окружающей среде. Водоплавающие животные без воздушной камеры используют постоянную работу плавников, что приводит к излишним энергозатратам.

Полость камеры не может расширяться и сжиматься произвольно. При погружении давление на тело возрастает, и оно сжимается, соответственно уменьшается объем газа, а общая плотность увеличивается. Рыба с лёгкостью опускается на нужную глубину. Когда рыбка поднимается в верхние слои воды, давление ослабевает, а пузырь расширяется, словно воздушный шарик, толкая животное вверх.

Давление газа на стенки камеры порождает нервные импульсы, вызывающие компенсаторные движения мышц и плавников. Используя такую систему, рыба без особых усилий плавает на нужной глубине, экономя до 70% энергии.

Дополнительные функции:


Такой простой, на первый взгляд, орган является незаменимым и жизненно необходимым аппаратом.

Рыбы, не имеющие воздушной камеры

Из описания плавательного пузыря видно, насколько он совершенный и многофункциональный . Несмотря на это, некоторые с лёгкостью обходятся и без него. В подводном мире обитает множество животных, у которых нет гидростатического аппарата. Для перемещения они пользуются альтернативными способами.

Глубоководные виды всю жизнь проводят на дне и не испытывают необходимости подниматься в верхний слой воды. Из-за огромного давления воздушная камера, если бы она и была, моментально сжалась бы, и весь воздух из неё вышел бы. Как её альтернатива, используется накопление жира, который имеет плотность меньше, чем у воды, и к тому же не сжимается.


Некоторые рыбы могут с легкостью обходиться без плавательного пузыря

Рыбам, которым необходимо очень быстро перемещаться и менять глубину, пузырь может только навредить. Такие представители морской фауны (скумбрия) используют только мышечные движения. Это повышает расход энергии, но зато увеличивает мобильность.

Хрящевые рыбы тоже привыкли обходиться своими силами. Они не могут недвижимо зависать на месте. Их скелет без костей, поэтому имеет меньший удельный вес. К тому же у акул очень большая печень, на две трети состоящая из жира. Некоторые виды могут изменять его процентное соотношение, и тем самым утяжеляют или облегчают своё тело.

Водные млекопитающие, такие как киты и дельфины, снабжены толстым слоем жировой ткани под кожей и наполненными воздухом лёгкими.

Жизнь на планете Земля зародилась в водной среде мирового океана, и все мы - потомки рыб. Существуют научные предположения о том, что в процессе эволюции дыхательные органы наземных животных произошли именно от рыбьих пузырей.

Один мой родственник, весьма увлечённый рыбной ловлей, очень любил такой деликатес: обжаренный над спичкой рыбий плавательный пузырь… не могу судить о достоинствах такого блюда – но попробовать, в принципе, можно, интересно было бы узнать, каково на вкус… а ещё интереснее – разобраться, что это за орган и для чего он нужен рыбам?

Возникает он во внутриутробном периоде – и в это время представляет собой вырост кишечной трубки, расположенный над позвоночником, и при этом пузырь связан с кишечной трубкой воздушным каналом. В дальнейшем – по мере развития пищеварительной системы – из этого участка кишечной трубки сформируется пищевод. Будет ли с ним по-прежнему связан плавательный пузырь? У некоторых видов рыб – да (их называют физостомами, или открытопузырными), и через этот канал в него будут входить газы, а также выходить из него. Так дело обстоит у сельди, карпа, осетровых – эти рыбы могут регулировать объём плавательного пузыря путём заглатывания воздуха.

Но есть и такие рыбы, у которых канал, связывающий плавательный пузырь с пищеварительной системой, зарастает. Как же пузырь наполняется газами у таких рыб – закрытопузырных, или физоклистов? Разумеется, природа об этом позаботилась: на стенке плавательного пузыря у них есть густое сплетение капилляров, оно называется красным телом. Вот через кровь, проходящую через эти капилляры, и выделяются, а также поглощаются газы. К закрытопузырным принадлежат, например, судак и окунь.

Как «работает» плавательный пузырь? Прежде всего, это «гидростатический аппарат» рыбы. Чем глубже находится рыба, тем сильнее сжат газ в её плавательном пузыре, тем больше её удельный вес – и тем быстрее она погружается. Напротив, чем на меньшей глубине находится рыба, тем более расширяется газ в плавательном пузыре, тем удельный вес меньше, тем сильнее рыба выталкивается к поверхности.

Обо всех этих изменениях давления немедленно «узнаёт» мозг рыбы, куда посылают сигналы нервные окончания, расположенные в стенках плавательного пузыря, и в соответствии с этими сигналами мозг «управляет» мышцами рыбы.

На определённой глубине давление внутри и снаружи выравнивается – и тогда рыбе не нужно совершать вообще никаких движений, чтобы остаться на этой глубине (с точки зрения гидростатики такое состояние называется нулевой плавучестью). Это соответствует «естественной среде обитания» рыбы, где она проводит большую часть времени. Значение такого эволюционного приобретения мы поймём, если посмотрим на рыб, у которых плавательного пузыря нет – например, на акул. Эти морские хищники постоянно двигаются, даже когда отдыхают – иначе они начнут «падать вниз» в толще воды!

Впрочем, при всей полезности плавательного пузыря, есть рыбы, которым он бы только мешал. Как уже говорилось, он помогает рыбам «стабилизировать» своё положение в толще воды, соответственно, быстро передвигаться в воде вверх и вниз с ним было бы непросто, и у тех рыб, которые делают это постоянно, плавательного пузыря нет – например, у скумбрии, у тунца.

Не нужен плавательный пузырь и глубоководным рыбам: на большой глубине давление воды такое сильное, что плавательный пузырь его попросту не выдержал бы – оно в два счёта вытолкнуло бы из него весь газ!

Гидростатическая функция – главная задача плавательного пузыря, но не единственная. Некоторые рыбы – например, карпы и сомы – с его помощью воспринимают ударные и звуковые волны. А у некоторых рыб плавательный пузырь является источником… голоса. Да, рыбы далеко не такие молчуны, как принято считать! Во время Второй мировой войны американцы на своих подводных лодках долго не могли понять, кто же издаёт под водой урчащие звуки, искали вражеские субмарины, а оказалось – это были рыбы триглы. И свои «концерты» они дают именно с помощью плавательных пузырей.

Как видим, плавательный пузырь не так прост, как кажется. А главное – у него оказалось большое эволюционное будущее: из него впоследствии сформировались лёгкие, позволившие живым существам выйти на сушу.