Виды и принцип работы механического нагнетателя. Достоинства и недостатки применения наддува двигателя Что такое наддув двигателя

Основные достоинства применения наддува заключаются, конечно, в повышении мощности при практически неизменных показателях массы и габаритов. Однако имеются и другие достоинства (которые оцениваются в условиях одинаковой развиваемой мощности как двигателем с наддувом, так и без наддува). К ним относятся следующие.

Повышение топливной экономичности, т.е. снижение удельного эффективного расхода топлива. Дизель с наддувом имеет более низкий удельный расход топлива, чем аналогичный дизель с естественным всасыванием, в диапазоне повышенных нагрузок, т.е. тогда, когда особенно существенно сказывается давление наддува.

Рис. Сравнение нагрузочных характеристик по удельному расходу топлива дизелей с наддувом и без наддува

При пониженных нагрузках, когда двигатель с наддувом приближается по этому показателю к двигателю без наддува, экономичность их сравнивается или даже ухудшается у наддувного двигателя. И всё же при 100% нагрузки безнаддувного двигателя его удельный расход превышает удельный расход дизеля с наддувом (при той же мощности) на величину, превышающую 7 %.

Основными причинами повышения экономичности дизеля с наддувом являются следующие:

  • A) Более совершенное сгорание благодаря возможности использовать повышенный коэффициент избытка воздуха.
  • Б) Большая доля топлива сгорает при постоянном объёме, повышается степень повышения давления X при сгорании.
  • B) Зарядка цилиндра происходит воздухом повышенного давления, благодаря чему появляется дополнительная положительная работа, причём энергия на предварительное сжатие воздуха отбирается не от двигателя, а от отработавших газов, которые в двигателе без наддува выбрасывались в атмосферу.

Можно сказать, что моторесурс дизеля с наддувом превышает моторесурс аналогичного безнаддувного двигателя. Это связано со следующими факторами. Период задержки воспламенения в наддувном двигателе, как правило, уменьшается, т. к. впрыскивание топлива происходит в среду с повышенной температурой. В результате этого снижается фактор динамичности цикла, сгорание становится более мягким, пропадают характерные для дизеля ударные нагрузки.

Повышение температуры и давления заряда в цилиндре позволяют на двигателе с наддувом применять нетрадиционные (альтернативные) топлива, как правило, более дешёвые. Их особенностью как правило, является пониженная воспламеняемость (низкие цетановые числа), повышенная вязкость и т. д.

Повышенный коэффициент избытка воздуха позволяет лучше охлаждать камеру сгорания. Благодаря повышенному коэффициенту избытка воздуха отработавшие газы имеют более низкую температуру, т. е. не перегружают термическими нагрузками выпускной клапан и т. д. Благодаря наддуву среднее эффективное давление дизеля становится выше, но максимальное давление не возрастает в такой же степени, т.е. не возрастают нагрузки на подшипники и другие детали, что повышает срок их службы.

В нестандартных условиях, например, в условиях высокогорья, двигатель с турбонаддувом менее чувствителен к снижению плотности воздуха с ростом высоты над уровнем моря. Снижение плотности автоматически в определённой степени компенсируется повышением эффективности работы турбонагнетателя.

Практические достоинства применения наддува заключаются в следующем. Целесообразно применять наддув, если требуется повысить мощность силовой установки, практически не меняя конструкции самого двигателя. Целесообразно применять наддув, когда нужно сэкономить пространство, например, пространство внутри судна для увеличения полезного объёма перевозимого груза. Цена на двигатель с наддувом остаётся ниже, чем цена на двигатель без наддува (при одинаковой мощности).

При всех указанных достоинствах применение наддува обладает и рядом недостатков, которые зависят прежде всего от применяемых схем наддува, методов наддува, принципов его организации, конструктивного оформления системы наддува. На рисунке показано, что двигатель со свободным турбокомпрессором имеет номинальную мощность на 10 — 15 % выше, чем двигатель без наддува. Однако при этом коэффициент приспособляемости (К) по моменту снизился на 4,3 %, а по частоте (Кп) — на 7,5 %. Это является недостатком двигателя силовой установки транспортного назначения. Известно, что бензиновый двигатель более приспособлен для использования в качестве двигателя для транспортного средства благодаря высоким значениям коэффициентов приспособляемости по моменту. Такой двигатель обладает лучшей тяговой характеристикой.

Рис. Изменение внешней скоростной характеристики дизеля (характеристика крутящего момента) в вариантах без наддува и с наддувом

Спрямление внешней скоростной характеристики по моменту при применении наддува объясняется изменением (спрямлением) кривой относительного коэффициента наполнения.

В условиях эксплуатации двигатели различных назначений работают преимущественно на неустановившихся режимах. Двигатели со свободным турбокомпрессором обладают худшей приёмистостью, чем двигатели с приводными нагнетателями или другими специальными схемами наддува. То есть из-за отставания разгона турбокомпрессора от разгона коленчатого вала, происходит отставание процесса снабжения цилиндров воздухом, снижаются эксплуатационные экономические и мощностные показатели.

В целом, говоря о достоинствах дизелей с наддувом, можно отметить следующее:

  1. Благодаря применению наддува можно поднять мощность силовой установки, источника энергии без дорогостоящих модернизаций.
  2. Благодаря наддуву можно использовать более компактные установки, экономя габариты машинного зала, машинного отделения судна, подкапотного пространства автомобиля и т. д., а также снизить массу установки.
  3. Благодаря наддуву можно снизить расход топлива, вообще стоимость расходов на эксплуатацию установок.
  4. Благодаря турбонаддуву снижается шум выхлопа, т. к. турбина сама является хорошим глушителем шума.
  5. Благодаря наддуву можно решить проблемы, связанные с эксплуатацией установок в высокогорных условиях.
  6. Двигатели с наддувом позволяют применять более дешёвые, нетрадиционные топлива.
  7. Двигатели с наддувом меньше загрязняют окружающую среду вредными выбросами.

К недостаткам наддува относятся более высокие механические и тепловые нагрузки, чем у двигателей без наддува. При определённых условиях двигатель с турбонаддувом имеет менее благоприятное протекание кривой крутящего момента двигателя, особенно при высоких степенях наддува. Двигатель со свободным турбонаддувом имеет худшую приёмистость.

Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Мощность двигателя напрямую связана с рабочим объемом цилиндров и количеством подаваемой в них топливо-воздушной смеси. Т.е., чем больше в цилиндрах сгорает топлива, тем более высокую мощность развивает силовой агрегат. Однако самое простое решение – повысить мощность двигателя путем увеличения его рабочего объема приводит к увеличению габаритов и массы конструкции.

Количество подаваемой рабочей смеси можно поднять за счет увеличения оборотов коленчатого вала (другими словами, реализовать в цилиндрах за единицу времени большее число рабочих циклов), но при этом возникнут серьезные проблемы, связанные с ростом сил инерции и резким увеличением механических нагрузок на детали силового агрегата, что приведет к снижению ресурса мотора. Наиболее действенным способом в этой ситуации является наддув.

Представим себе такт впуска двигателя внутреннего сгорания: мотор в это время работает как насос, к тому же весьма неэффективный – на пути воздуха находится воздушный фильтр, изгибы впускных каналов, в бензиновых моторах – еще и дроссельная заслонка. Все это, безусловно, снижает наполнение цилиндра. Ну а что требуется, чтобы его повысить? Поднять давление перед впускным клапаном – тогда воздуха в цилиндре “поместится” больше. При наддуве улучшается наполнение цилиндров свежим зарядом, что позволяет сжигать в цилиндрах большее количество топлива и получать за счет этого более высокую агрегатную мощность двигателя.

В ДВС применяют три типа наддува:

  • резонансный –при котором используется кинетическая энергия объема воздуха во впускных коллекторах (нагнетатель в этом случае не нужен)
  • механический – в этом варианте компрессор приводится во вращение ремнем от двигателя
  • газотурбинный (или турбонаддув) – турбина приводится в движение потоком отработавших газов.

У каждого способа свои преимущества и недостатки, определяющие область применения.

Как уже отмечалось в начале статьи, для лучшего наполнения цилиндра следует поднять давление перед впускным клапаном. Между тем повышенное давление необходимо вовсе не постоянно – достаточно, чтобы оно поднялось в момент закрытия клапана и «догрузило» цилиндр дополнительной порцией воздуха. Для кратковременного повышения давления вполне подойдет волна сжатия, «гуляющая» по впускному трубопроводу при работе мотора. Достаточно лишь рассчитать длину самого трубопровода, чтобы волна, несколько раз отразившись от его концов, пришла к клапану в нужный момент.

Теория проста, а вот воплощение ее требует немалой изобретательности: клапан при разных оборотах коленчатого вала открыт неодинаковое время, а потому для использования эффекта резонансного наддува требуются впускные трубопроводы переменной длины. При коротком впускном коллекторе мотор лучше работает на высоких оборотах, при низких оборотах более эффективен длинный впускной тракт. Переменные длины впускных трубопроводов можно создать двумя способами: или путем подключения резонансной камеры, или через переключение на нужный впускной канал или его подключение. Последний вариант называют еще динамическим наддувом. Как резонансный, так и динамический наддув могут ускорить течение впускного столба воздуха.

Эффекты наддува, создаваемые за счет колебаний напора воздушного потока, находится в диапазоне от 5 до 20 миллибар. Для сравнения: с помощью турбонаддува или механического наддува можно получить значения в диапазоне между 750 и 1200 миллибар. Для полноты картины отметим, что существует еще инерционный наддув, при котором основным фактором создания избыточного давления перед клапаном является скоростной напор потока во впускном трубопроводе. Дает незначительную прибавку мощности при высоких (больше 140 км/ч) скоростях движения. Используется в основном на мотоциклах.

Механические нагнетатели (по англ. supercharger) позволяют довольно простым способом существенно поднять мощность мотора.
Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки. Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум.


Существует два вида механических нагнетателей: объемные и центробежные.

Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm.

Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува. Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым.

Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности. Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors.

Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы. Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги.

Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку.
Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам.
Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении. Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann.

Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса.

Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах. Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга.

Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта - весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается - избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува.

При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

Газотурбинный наддув

Более широко на современных автомобильных двигателях применяются турбокомпрессоры. По сути, это тот же центробежный компрессор, но с другой схемой привода. Это самое важное, можно сказать, принципиальное отличие механических нагнетателей от “турбо”. Именно схема привода в значительной мере определяет характеристики и области применения тех или иных конструкций. У турбокомпрессора крыльчатка-нагнетатель сидит на одном валу с крыльчаткой-турбиной, которая встроена в выпускной коллектор двигателя и приводится во вращение отработавшими газами. Частота вращения может превышать 200.000 об./мин. Прямой связи с коленвалом двигателя нет, и управление подачей воздуха осуществляется за счёт давления отработавших газов.

К достоинствам турбонаддува относят: повышение КПД и экономичности мотора (механический привод отбирает мощность у двигателя, этот же использует энергию отработавших газов, следовательно, КПД увеличивает). Не следует путать удельную и общую экономичность мотора. Естественно, для работы двигателя, мощность которого возросла за счет применения турбонаддува, требуется больше топлива, чем для аналогичного безнаддувного мотора меньшей мощности. Ведь наполнение цилиндров воздухом улучшают, как мы помним, для того, чтобы сжечь в них большее количество топлива. Но массовая доля топлива, приходящаяся на единицу мощности в час у двигателя, оснащенного ТК, всегда ниже, чем у схожего по конструкции силового агрегата, лишенного наддува.

Турбонаддув дает возможность достичь заданных характеристик силового агрегата при меньших габаритах и массе, чем в случае применения “атмосферного” двигателя. Кроме того, у турбодвигателя лучше экологические показатели. Наддув камеры сгорания приводит к снижению температуры и, следовательно, уменьшению образования оксидов азота. В бензиновых двигателях наддувом добиваются более полного сгорания топлива, особенно на переходных режимах работы. В дизелях дополнительная подача воздуха позволяет отодвинуть границу возникновения дымности, т. е. бороться с выбросами частиц сажи.

Дизели существенно лучше приспособлены к наддуву вообще, и к турбонаддуву в частности. В отличие от бензиновых моторов, в которых давление наддува ограничивается опасностью возникновения детонации, им такое явление неведомо. Дизель можно наддувать вплоть до достижения предельных механических нагрузок в его механизмах. К тому же отсутствие дросселирования воздуха на впуске и высокая степень сжатия обеспечивают большее давление отработавших газов и их меньшую температуру в сравнении с бензиновыми моторами. В общем, как раз то, что нужно для применения турбокомпрессора. Турбокомпрессоры более просты в изготовлении, что окупает ряд присущих им недостатков.

При низкой частоте вращения двигателя количество отработавших газов невелико, соответственно, эффективность работы компрессора невысока. Кроме того, турбонаддувный двигатель, как правило, имеет т. н. «турбояму» (по-английски “turbo-lag”) - замедленный отклик на увеличение подачи топлива. Вам нужно резко ускориться - вдавливаете педаль газа в пол, а двигатель некоторое время «думает» и лишь потом подхватывает. Объяснение простое - требуется время, пока мотор наберет обороты, увеличится давление выхлопных газов, раскрутится турбина, с ней крыльчатка нагнетателя – и наконец, “пойдет” воздух. Избавиться от указанных недостатков конструкторы пытаются разными способами. В первую очередь, снижением массы вращающихся деталей турбины и компрессора. Ротор современного турбокомпрессора настолько мал, что легко умещается на ладони.

Снижение массы достигается не только конструкцией ротора, но и выбором для него соответствующих материалов. Основная сложность при этом- высокая температура отработавших газов. Металлокерамический ротор турбины примерно на 20% легче изготовленного из жаростойких сплавов, да к тому же обладает меньшим моментом инерции. До последнего времени срок службы всего агрегата ограничивала долговечность подшипников. По сути, это были вкладыши, подобные вкладышам коленчатого вала, которые смазывались маслом под давлением. Износ таких подшипников скольжения был, конечно, велик, однако шариковые не выдерживали огромной частоты вращения и высоких температур. Выход нашли когда удалось разработать подшипники с керамическими шариками. Однако достойно удивления не применение керамики – подшипники заполнены постоянным запасом пластичной смазки, то есть канал от штатной масляной системы двигателя уже не нужен!

Избавиться от недостатков турбокомпрессора позволяет не только уменьшение инерционности ротора, но и применение дополнительных, иногда довольно сложных схем управления давлением наддува. Основные задачи при этом - уменьшение давления при высоких оборотах двигателя и повышение его при низких. Полностью решить все проблемы можно использованием турбины с изменяемой геометрией (Variable Nozzle Turbine), например, с подвижными (поворотными) лопатками, параметры которой можно менять в широких пределах.

Принцип действия VNT турбокомпрессора заключается в оптимизации потока выхлопных газов, направляемых на крыльчатку турбины. На низких оборотах двигателя и малом количестве выхлопных газов VNT турбокомпрессор направляет весь поток выхлопных газов на колесо турбины, тем самым увеличивая ее мощность и давление наддува. При высоких оборотах и высоком уровне газового потока турбокомпрессор VNT располагает подвижные лопатки в открытом положении, увеличивая площадь сечения и отводя часть выхлопных газов от крыльчатки, защищая себя от превышения оборотов и поддерживая давление наддува на необходимом двигателю уровне, исключая перенаддув.

Комбинированные системы

Помимо одиночных систем наддува сейчас часто встречается и двухступенчатый наддув. Первая ступень - приводной компрессор - обеспечивает эффективный наддув на малых оборотах ДВС, а вторая - турбонагнетатель - утилизирует энергию выхлопных газов. После достижения силовым агрегатом достаточных для нормальной работы турбины оборотов, компрессор автоматически выключается, а при их падении вновь вступает в действие.

Ряд производителей устанавливают на свои моторы сразу два турбокомпрессора. Такие системы называют «битурбо» или «твинтурбо». Принципиальной разницы в них нет, за одним лишь исключением. «Битурбо» подразумевает использование разных по диаметру, а следовательно и производительности, турбин. Причем алгоритм их включения может быть как параллельным, так и последовательным (секвентальным). На низких оборотах быстро раскручивается и вступает в работу турбонаддув маленького диаметра, на средних к нему подключается «старший брат».

Таким образом, выравнивается разгонная характеристика автомобиля. Система дорогостоящая, поэтому ее можно встретить на престижных автомобилях, например Maserati или Aston Martin. Основная задача «твинтурбо» заключается не в сглаживании «турбоямы», а в достижении максимальной производительности. При этом используются две одинаковые турбины. Устанавливаются «твин-» и «битурбо» как на V-образные блоки, так и на рядные моторы. Варианты подключения турбин также идентичны системе «битурбо». В чем же смысл? Дело в том, что производительность турбины напрямую зависит от двух ее параметров: диаметра и скорости вращения. Оба показателя весьма капризны. Увеличение диаметра приводит к повышению инерционности и, как следствие, к пресловутой «турбояме». Скорость же турбины ограничивается допустимыми нагрузками на материалы. Поэтому две скромные и менее инерционные турбины могут оказаться эффективнее одной большой.

Во-первых, вовремя меняйте масло и масляный фильтр. Во-вторых, используйте только масло, предназначенное для двигателей, оборудованных турбонаддувом, которое изначально рассчитано на более высокие температуры, чем обычное. Но в дороге всякое может случиться, и если вам пришлось залить неизвестное масло, то не гоните, двигайтесь потихоньку. Двигатель это масло переживет, а вот турбонаддув - не обязательно. Приехав домой, сразу же смените масло и масляный фильтр.

И, наконец, третье, самое главное условие нормальной работы турбонаддува. В жизни турбины есть два самых ответственных момента: запуск двигателя и его остановка. При запуске холодного двигателя масло в нем имеет высокую вязкость, оно с трудом прокачивается по зазорам; еще не установились тепловые зазоры; нагрев разных деталей компрессора, а следовательно, и тепловое расширение, идут с разной скоростью. Поэтому не спешите, дайте двигателю прогреться.

Если вам надо остановиться, никогда не глушите двигатель сразу. В зависимости от режима езды дайте ему поработать на холостом ходу 2-5 минут (зимой можно дольше). За это время вал турбины снизит обороты до минимальных, а детали, непосредственно соприкасающиеся с выхлопными газами, плавно остынут. В этой ситуации значительно облегчает жизнь турбо-таймер. Он проследит за тем, чтобы разгоряченный двигатель автомобиля поработал несколько минут на холостом ходу, остужая элементы турбонаддува, даже если владелец уже покинул и закрыл своё авто. Впрочем, подобную функцию имеют и многие охранные сигнализации.

Мощность двигателя может быть также увеличена за счет наддува. Для наддува применяют специальные компрессоры с приводом от коленчатого вала затрачивается часть мощности или газотурбинные в которых воздух или горючая смесь сжимается до поступления в цилиндры. Системы наддува Наиболее характерными схемами наддува являются: механический наддув; турбокомпрессорный наддув газовая турбина центробежный компрессор; комбинированный наддув механический газотурбинный; компрессор расположен до карбюратора нужна герметизация;...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ЛЕКЦИЯ 15

СИСТЕМА НАДДУВА

1 Общие сведения о наддуве двигателей

Основными тенденциями в совершенствовании ДВС является повышение мощности при снижении расхода горючего и токсических компонентов отработавших газов. Анализ развития средств назнемного транспорта показывает, что поршневые двигатели еще долгое время будут сохранять лидирующие позициии. Конструкцию двигателя принято оценивать по литровой мощности

В основном увеличение мощности связано с увеличением числа оборотов коленчатого вала двигателя. Увеличение числа оборотов эффективно в том случае, если коэффициент наполнения имеет большую величину. С этой целью следует уменьшать потери во впускной и выпускной системах, использовать в них инерционные явления и совершенствовать системы газораспределения. Для повышения эффективной мощности с ростом числа оборотов необходимо снижать механические потери (применение соответствующих материалов, масел, стабильность температурного режима, очистка масла от механических примесей и его охлаждение, точность изготовления деталей и качество механической обработки поверхности).

Мощность двигателя может быть также увеличена за счет наддува. Для наддува применяют специальные компрессоры с приводом от коленчатого вала (затрачивается часть мощности) или газотурбинные, в которых воздух или горючая смесь сжимается до поступления в цилиндры. Сжатие заряда происходит быстрее чем повышение температуры заряда, поэтому плотность заряда после сжатия больше плотности заряда до компрессора. Массовое количество заряда, поступающего за цикл в цилиндр двигателя будет больше, чем при впуске из атмосферы.

2 Системы наддува

Наиболее характерными схемами наддува являются:

  • механический наддув;
  • турбокомпрессорный наддув (газовая турбина + центробежный компрессор);
  • комбинированный наддув (механический + газотурбинный);
  • компрессор расположен до карбюратора (нужна герметизация);
  • компрессор расположен после карбюратора (улучшается смесеобразование, ухудшаются условия работы лопаток компрессора из-за топлива);
  • импульсная система наддува;
  • неимпульсная система наддува.

Наибольшее применение для наддува получили лопаточно-центробежные компрессоры. Основными параметрами компрессора являются степень повышения давления, производительность компрессора и адиабатический КПД. Работа, затрачиваемая на сжатие 1 кг воздуха в компрессоре от давления Ро до Рк (адиабатическое сжатие) определяется:

В действительности процесс сжатия происходит при наличиии теплообмена с окружающей средой и внутренних потерь, что увеличивает затрачиваемую работу. Это учитывается адиабатическим КПД (0,65 ─ при степени повышения давления равной 1,3. При увеличении степени, КПД снижается до 0,5). Для достижения больших давлений наддува применяют роторно-шестеренчатые компрессоры.

В быстроходных двигателях применяют высокооборотные центробежные или осевые компрессоры (). При снижении КПД и повышении степени наддува значительно увеличивается работа, затрачиваемая на сжатие заряда в компрессоре и температура, эффективность наддува при этом снижается. При повышении степени наддува сверх определенного значения эффективная мощность не возрастает из-за уменьшения механического КПД двигателя вследствии роста мощности, затрачиваемой на привод компрессора.

Наддув несколько изменяет характер процесса сгорания вследствии повышения давления и температуры конца сжатия. При наддуве увеличивается количество топлива, участвующего в сгорании, следовательно возрастают максимальные зна чения давления, температуры конца сгорания, возрастает тапловая напряженность деталей. В момент перекрытия клапанов при наддуве происходит более лучшее охлаждение клапанов. Указанные обстоятельства следует учитывать при применении наддува.

В карбюраторных двигателях применение наддува ограничивается условиями возникновения детонационного сгорания и чаще всего применяется при эксплуатации автомобилей в горных условиях. Если применяется наддув в карбюраторном двигателе требуется коррекция показателя степени сжатия. Применение сравнительно высоких давлений наддува (больше 0,2 Мпа ) требует изменения фаз газораспределения, применения холодильника для снижения температуры заряда после сжатия. Использование наддува наиболее эффективно в дизелях, где увеличение давления наддува лимитируется только термической и механической прочностью конструкции двигателя. Мощность дыигателя при этом повышается на 20-30% и среднее эфффективное давление возрастает до 0,9-0,95 Мпа.

3 Газотурбинный наддув

При ГТН для сжатия воздуха и его нагнетания используется часть энергии отработавших газов. Это позволяет частично утилизировать перепад между давлением в конце процесса расширения в цилиндре двигателя и атмосферным давлением воздуха. Мощность двигателй при ГТН может возрастать до 50%, снижается токсичность отработавших газов. Конструкция двигателя включает применение соответствующих материалов, что удорожает изготовление двигателя, но стоимость двигателя, отнесенная к единице мощности меньше, чем без наддува. Воздух поступает в компрессор через входное устройство в центре корпуса. Рабочее колесо и направляющий аппарат обеспечивают возрастание потенциальной и кинетической энергии, далее воздух поступает в диффузор и воздухосборник, откуда распределяется по цилиндрам при открытии клапана. Абсолютная скорость движения воздуха в колесе достигает 300-350 м/с.

Турбокомпрессор состоит из одноступенчатого центробежного компрессора и радиальной центростремительной турбины. Основными узлами турбокомпрессора являются: компрессорная ступень, турбинная ступень и узел подшипникков с уплотнениями. Колеса компрессора и турбины расположены на противоположных концах вала ротора консольно относительно подшипников. Рабочее колесо компрессора отливается из сплава типа АЛ4 в гипсовые формы, полученные по эластичным моделям. Колесо одевается на вал с натягом, поэтому при установке на вал оно нагревается до 1100-1300 гр.С. Рабочее колесо турбины полуоткрытого типа с радиальными лопатками изготавливается методом литья по выплавляемым моделям из жаропрочного никелевого сплава типа ИНКО-713С, АНВ-300 и им подобным. Оно соединяется с валом сваркой трением.Корпус изготавливается из жаропрочного чугуна. В турбокомпрессоре применен “плавающий” подшипник скольжения с невращающейся моновтулкой. От осевых перемещений ротор удерживается с двух сторон втулками кольцедержателями, напресованными на вал ротора турбокомпрессора. Смазака подшипника осуществляется от система смазки двигателя, под давлением, в корпус подшипников.Для устойчивой работы двигателя на всех оборотах, уменьшения эффекта "турбоямы", применена система регулирования давления, с помощью регулятора, путем перепуска газа мимо турбины.

Отработавшие газы поступают на лопатки соплового аппарата в корпусе. При прохождении газа через сопловый аппарат скорость его увеличивается. С этой скоростью газ поступает в лопаточные каналы рабочего колеса турбины. Тангенциальное действие струи газов на лопатки вызывает появление крутящего момента. На выходе из турбины устанавливают вращающийся выходной спрямляющий аппарат. Окружная скорость рабочих колес турбокомпрессора определяется напором, развиваемым турбокомпрессором. V= 280-350 м/с. При средней температуре около 700 градусов Цельсия и более колеса турбин изготавливают из сплавов на никелевой основе. Для обеспечения высокой приемистости турбокомпрессора стараются снизить наружний диаметр и момент инерции рабочего колеса. По окружной скорости и диаметру рабочего колеса вычисляют частоту вращение ротора, которая может достигать 50000-80000 об/мин.

4 Характеристики автомобильных двигателей с наддувом

Расчетные характеристики турбокомпрессора должны обеспечивать характер нарастания крутящего момента аналогично двигателю без наддува. В этом случае наибольшая подача воздуха должна происходить на таком скоростном режиме, при котором крутящий момент максимальный. При увеличении цикловой подачи снижается коэффициент избытка воздуха, но его снижение должно быть таким, чтобы не происходило увеличение дымности отработавших газов. Отдельные конструкции турбокомпрессора имеют регулируемые сопловые каналы, которые при снижении числа оборотов коленчатого вала с помоью специального устройства поворачивают лопатки соплового аппарата в сторону уменьшения проходного сечения. В результате этого давление газа на входе повышается и скорость истечения увеличивается, что повышает частоту вращения вала ТК и давление свежего заряда. Удельный расход топлива практически остается одинаковым при повышении мощности двигателя.

В трубопроводах быстроходных автомобильных двигателей в процессе впуска и выпуска возникают колебания газового потока. Это явление во впускных и выпускных трубопроводах можно использовать для динамического наддува. Если настроить выпускную систему так, чтобы к концу процесса выпуска в момент перекрытия клапанов вблизи выпускного клапана образовывалось разряжение, то количество остаточных газов уменьшится, улучшится наполнение цилиндра. При аналогичной организации процесса впуска в конце впуска давление свежего заряда увеличивается, что вызывает улучшение наполнения цилиндра. Настройка динамической системы выпуска отработавших газов производится путем изменения длины выпускного трубопровода для каждой группы цилиндров. Правильно настроенная система выпуска и впуска обеспечивает увеличение эффективной мощности двигателя до 10%.

Другие похожие работы, которые могут вас заинтересовать.вшм>

4138. Система альтернативного голосування. Система кумулятивного голосування. Система балів 4.28 KB
Система альтернативного голосування. Система кумулятивного голосування. Система балів Способом яким долається нерезультативність системи абсолютної більшості вже у першому турі виборів є альтернативне голосування преференційне або абсолютне голосування за якого виборці голосують за одного кандидата але вказують при цьому порядок своїх переваг для інших. Така система запроваджена у Австралії при виборах Палати представників нижньої палати австралійського парламенту.
9740. Партийно политическая система Японии и избирательное право и система 47.98 KB
Основные права человека гарантируются Конституцией Японии. Они определяются как вечные и незыблемые. К этим правам относятся право на равенство, свободу, социальные права, право на защиту основных прав человека. Конституция позволяет ограничивать права человека, если они нарушают общественное совместное благосостояние или права других людей.
2668. Энергетическая система (энергосистема). Электроэнергетическая (электрическая) система 44.5 KB
Естественные природные источники из которых энергия черпается для приготовления ее в нужных видах для различных технологических процессов называются энергетическими ресурсами. Различают следующие виды основных энергетических ресурсов: а химическая энергия топлива; б атомная энергия; в водная энергия то есть гидравлическая; г энергия излучения солнца; д энергия ветра. е энергия приливов и отливов; ж геотермальная энергия. Первичный источник энергии или энергоресурс уголь газ нефть урановый концентрат гидроэнергия солнечная...
5899. Система права и система законодательства 22.78 KB
Система права и система законодательства Понятие системы права Система права суть внутреннее строение структура права отражающее объединение и дифференциацию юридических норм. Основная цель этого понятия объяснить одновременно интегрирование и деление нормативного массива на отрасли и институты дать системную характеристику позитивного права в целом. Особо здесь нужно подчеркнуть то что структура права его система обусловливает его форму систему законодательства и неразрывно с ней связана. те права и обязанности которые стали...
4136. Мажоритарна виборча система абсолютної більшості. Мажоритарна виборча система відносної більшості 3.91 KB
Розглянемо наступний вид уніномінальних мажоритарних систем – систему абсолютної більшості яка на відміну від попередньої системи для обрання кандидата вимагає зібрати більше половини голосів виборців тобто діє формула 50 плюс один голос. Таким чином за системи абсолютної більшості вибори найчастіше всього здійснюються у два тури. При застосуванні цієї системи як правило є обов’язковий нижній поріг участі виборців у голосуванні. Головним недоліком мажоритарної системи абсолютної більшості є певна нерезультативність виборів.
17398. Система Сатурна 1.58 MB
Если принять во внимание, что кольца состоят из глыб льда, то может ли это помешать пролёту космического корабля через них? Думаю, что да, так как может повредиться обшивка корабля, или корабль может отклониться от курса. Следовательно, траектория должна быть рассчитана так, чтобы миновать кольца.
5780. Правовая система 14.89 KB
Право как система характеризуется следующими признаками: Вопервых система права характеризуется объективностью. Вовторых для системы права характерны единство и взаимосвязь норм ее составляющих. Любой структурный элемент извлеченный из системы права лишается системных функций а следовательно и социальной значимости. Втретьих система права как целостное образование охватывает все нормы действующие в той или иной стране и представляет собой сложный многоуровневый комплекс состоящий из норм права правовых институтов и отраслей...
9300. Система акцизов 13.4 KB
О порядке исчисления и уплаты акцизов В законодательных актах Российской Федерации: взимание акцизов с подакцизных товаров ввозимых на территорию Российской Федерации порядок уплаты акцизов на нефть включая газовый конденсат на отдельные виды минерального сырья закон О недрах.
2238. КРОВЕНОСНАЯ СИСТЕМА 16.95 KB
Артерии – сосуды по которым кровь движется от сердца. В зависимости от соотношения тканевых элементов в стенке артерий выделяют артерии 3х типов: эластического типа аорта легочной ствол – в средней оболочке преобладают эластические волокна в них кровь поступает под большим давлением и с большой скоростью могут сильно растягиваться прочные; мышечного типа большинство артерий позвоночная плечевая лучевая артерии мозга – в средней оболочке хорошо развиты миоциты закручены по типу пружины которые сокращаясь регулируют...
6888. Структура (система) КПР 7.28 KB
В системе конституционного права выделяют институты. самим предметом конституционного права; Источником является конституция РФ основной закон в государстве нормы которого являются исходными для всех отраслей права; Устанавливает основополагающие принципы конституционного строя являющиеся важнейшими нормами и для других отраслей права...

Назначение систем наддува ДВС – повышение массового наполнения цилиндров двигателя свежим зарядом. Достигается это обычно с помощью специальных устройств или агрегатов наддува. Двигатели с такими системами называются комбинированными. Системы наддува весьма разнообразны по принципу действия и, соответственно, по признакам классификации.

В комбинированных ДВС воздух или горючая смесь перед поступлением в цилиндры сжимается в компрессорах. Наддув считается низким, если в компрессоре  к < 1.9. Низкий наддув позволяет повысить мощность двигателей на 20-25%. При среднем наддуве ( к = 1.9-2.5) удается повысить ее на 25-50%. Высокий наддув ( к > 2.5) еще больше увеличивает мощность, однако его применение зачастую не оправдано вследствие значительного роста механической, тепловой напряженности деталей и узлов.

Наддув цилиндров двигателей может быть либо динамическим, либо осуществляемым с помощью специального нагнетателя (компрессора). В современных ДВС для наддува используются как объемные (роторно-шестеренчатые, винтовые, поршневые), так и лопаточные центробежные компрессоры. Газовые турбины чаще всего бывают радиально-осевыми, реже - осевыми.

Различают три системы наддува с помощью нагнетателей: с приводным компрессором, с турбокомпрессором и комбинированную (рис.11.1).

Рис.11.1. Схемы систем наддува ДВС

В первой схеме приводной компрессор через повышающую передачу соединяют с коленчатым валом двигателя. Для привода турбокомпрессора (схема 2) используют энергию отработавших газов, поступающих в газовую турбину. Компрессор устанавливают на одном валу с газовой турбиной. В случае комбинированной системы (схема 3) первой ступенью является приводной компрессор, а второй - турбокомпрессор. Двухступенчатый наддув может осуществляться двумя последовательно расположенными турбокомпрессорами или приводными компрессорами.

На тракторных и автомобильных дизелях чаще всего применяют газотурбинный наддув.

При этом возможны два основных варианта использования энергии:

1. Энергия, потребляемая компрессором, равна энергии, вырабатываемой газовой турбиной. В этом случае турбокомпрессор имеет лишь газовую связь с двигателем (рис.11.1.2). Такая схема обеспечивает высокие экономические показатели при максимальном упрощении конструкции и поэтому наиболее распространена. В таких двигателях утилизируется энергия отработанных газов, что позволяет в некоторых случаях даже повысить КПД двигателя.

2. Энергия, вырабатываемая газовой турбиной, не равна энергии, потребляемой компрессором. Разница энергии передается от двигателя к турбокомпрессору за счет применения механической связи ротора турбокомпрессора с коленчатым валом двигателя, что усложняет конструкцию последнего. Иногда в этих случаях вместо механической связи ротора турбокомпрессора с коленчатым валом применяют комбинированную систему наддува.

Механическую связь применяют и в случаях, когда необходимо передавать избыточную энергию от газовой турбины к двигателю при высоких давлениях наддува и температурах газов перед турбиной.

Возможны два варианта подвода газов к газовой турбине:

1) из общего выпускного трубопровода;

2) отдельно от каждого цилиндра или от группы цилиндров, в которой в соответствии с порядком их работы время между двумя последовательными импульсами давления, образующимися при выпуске газов из цилиндров, оказывается достаточно большим (импульсный наддув).

В первом случае, особенно в двигателях, с большим числом цилиндров и высокой частотой вращения, давление газов в выпускном трубопроводе выравнивается, амплитуда колебания давления перед турбиной невелика и процесс подвода газов к турбине можно рассматривать как происходящий при постоянном давлении. Во втором случае отработавшие газы поступают к газовой турбине с переменным давлением, что позволяет при определенных условиях повысить эффективность наддува.

Подвод газов к турбине при постоянном давлении создает повышенные сопротивления в выпускном тракте двигателя по сравнению с выпуском в атмосферу. Это ухудшает очистку цилиндров и уменьшает наполнение их свежим зарядом.

При импульсном наддуве после периода выпуска газов из одного цилиндра к началу перекрытия клапанов давление в выпускном тракте резко снижается. В результате этого увеличивается перепад давления между впускным и выпускным трактами и очистка камер сгорания становится более эффективной. Уменьшается работа, затрачиваемая на выталкивание газов. По мере увеличения давления наддува и роста среднего давления газов в выпускном тракте положительный эффект от применения импульсного наддува снижается, так как импульсы давления сглаживаются. Максимальный эффект в импульсной системе наддува достигается при p к < 0.15 МПа, при p к < 0.4 МПа применение импульсного наддува уже не дает эффекта. Для достижения наибольшего эффекта при импульсном наддуве выпускные трубопроводы делают по возможности короткими и меньшего объема. В импульсных системах используется кинетическая энергия отработавших газов, однако, ухудшается очистка цилиндров двигателя от отработавших газов, что является общим недостатком всех систем газотурбинного наддува.

В автотракторных дизелях при числе цилиндров 8 и более преимущественно применяются системы с постоянным давлением перед турбиной. КПД таких турбин выше, чем импульсных, а система выпуска получается более простой.

Следует отметить также меньшую (по сравнению с двигателями без наддува) приспособляемость и худшие пусковые свойства двигателей с наддувом.

Охладители воздуха

При наддуве температура воздуха за компрессором повышается, поэтому при среднем и высоком наддуве осуществляют промежуточное охлаждение воздуха между компрессором и впускным трубопроводом двигателя. Это способствует улучшению массового наполнения цилиндров, повышению мощности и топливной экономичности двигателя, снижению тепловой напряженности его деталей, уменьшению температуры газов перед турбиной.

Воздух можно охлаждать специальными охладителями либо посредством испарительного охлаждения - впрыскивания в воздух легко испаряющихся веществ (спирта, аммиака, воды и др.). Применяют два типа охладителей: воздухо-воздушные и водо-воздушные. Применяют как трубчатые, так и пластинчатые охладители.

Воздухо-воздушный охладитель устанавливают перед масляным и водяным радиаторами двигателя. Просасывание атмосферного воздуха через охладитель осуществляют вентилятором системы охлаждения двигателя. Охлаждаемый воздух движется внутри латунных трубок сердцевины охладителя, аналогичной той, которую применяют обычно в радиаторах системы охлаждения.

При водо-воздушном охлаждении вода с помощью насоса (специального либо имеющегося в системе охлаждения двигателя) циркулирует через охладитель и радиатор.

Хотя теплообмен между охлаждаемым воздухом и охлаждающей жидкостью при прочих равных условиях происходит более интенсивно, чем между охлаждаемым и охлаждающим воздухом, в целом воздухо-воздушные охладители более эффективны, чем водо-воздушные, из-за большего перепада температуры между воздухом и охлаждающим агентом.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

2. Виды наддува

3. Преимущества и недостатки различных видов наддува

4. Пределы повышения мощности путем наддува

Используемая литература

Введение

Одним из актуальных вопросов современного мирового и отечественного автомобильного и тракторного двигателестроения является вопрос производства в России эффективных и надежных турбокомпрессоров, не- обходимых для выпуска двигателей, удовлетворяющих экологическим требованиям Евро-3 и выше.

В 90-е годы сформировалась и полностью апробирована ведущими мировыми производителями и разработчиками дизельных двигателей концепция о том, что система турбонаддува является неотъемлемым компонентом современного экологически чистого двигателя. При этом турбо- наддув, в отличие от 70-80-х годов, перестал рассматриваться как средство форсирования двигателей и практически 100% современных базовых моделей проектируются и разрабатываются только с наддувом. Экологические приоритеты при разработке в настоящее время дизелей являются определяющими, а требования по выполнению все время ужесточающихся норм приводят к пересмотру уже утвердившихся подходов к разработке двигателей, а также систем и агрегатов наддува. Изменения эти происходят во всем мире очень динамично и устоявшиеся в течение десятилетий подходы рушатся на наших глазах при переходе от норм Евро-2 к Евро-3, а перспективные требования по экологии на 10-15 лет вперед резко активизировали исследования по созданию и оптимизации систем и агрегатов наддува.

наддув двигатель агрегатный мощность

1. Наддув

Наддув -- увеличение количества свежего заряда горючей смеси, подаваемой в двигатель внутреннего сгорания, за счёт повышения давления при впуске. Наддув обычно применяют с целью повышения мощности (на 20-45 %) без увеличения массы и габаритов двигателя, а также для компенсации падения мощности в условиях высокогорья. Наддув с «качественным регулированием» может применяться для снижения токсичности и дымности отработавших газов. Агрегатный наддув осуществляется с помощью компрессора, турбокомпрессора или комбинированно. Наибольшее распространение получил наддув с помощью турбокомпрессора, для привода которого используется энергия отработавших газов.

Агрегатный наддув применяют почти на всех видах транспортных дизелей (судовых, тепловозных, тракторных). Наддув на карбюраторных двигателях ограничивается возникновением детонации. К основным недостаткам агрегатного наддува относят:

· повышение механической и тепловой напряжённости двигателя вследствие увеличения давления и температуры газов;

· снижение экономичности;

· усложнение конструкции.

Всё большее распространение на транспортных двигателях внутреннего сгорания получает динамический наддув, который при несущественных изменениях в конструкции трубопроводов приводит к повышению коэффициента наполнения до в широком диапазоне изменения частоты вращения двигателя. Увеличение при наддуве позволяет форсировать дизель по энергетическим показателям в случае одновременного увеличения цикловой подачи топлива или улучшить экономические показатели при сохранении мощностных (при той же цикловой подаче топлива). Динамический наддув повышает долговечность деталей цилиндро-поршневой группы благодаря более низким тепловым режимам при работе на бедных смесях.

2. Виды наддува

Со времени, когда очевидной стала необходимость применения наддува двигателей, появилось множество вариантов наддува. Основными видами наддува являются следующие:

Рисунок 1- Виды наддува

Системы наддува можно квалифицировать по:

1) способу подачи воздуха без нагнетателя за счет инерции столба самого воздуха или газа;

2) конструкции нагнетателя;

3) виду привода нагнетателя;

4) типу связи между наддувочным агрегатом и двигателем.

Инерционный наддув (без нагнетателя, называемый еще «резонансным», «волновым», «акустическим») осуществляется за счет колебания давления во впускном трубопроводе поршневого двигателя. Волна понижения давления во впускном трубопроводе у входа в цилиндр во время такта впуска со скоростью звука перемещается до противоположного открытого конца трубопровода, отражается от него и в виде волны давления движется опять же со скоростью звука ко впускному клапану. Выбирая длину трубопровода таким образом, чтобы волна давления подходила к заключительному периоду впуска, можно обеспечить подачу заряда в цилиндр под избыточным давлением, осуществляя тем самым наддув двигателя (Рисунок 2).

Рисунок 2- Схема впускного тракта 1- корпус воздухоочистителя или специальный резонатор

Необходимую для этого длину трубопровода l можно рассчитать по времени ф прохождения волны от клапана к открытому концу трубопровода и обратно.

Энергия для «разгона» столба воздуха во впускном трубопроводе берется за счет дополнительной работы поршня, т.е. за счет повышения насосных и механических потерь двигателя.

Инерционный наддув как самостоятельная система наддува применяется в двигателях легковых автомобилей. Длина впускного трубопровода может изменяться в зависимости от скоростного режима двигателя, обеспечивая тем самым высокое наполнение цилиндров двигателя в широком диапазоне режимов.

В сочетании с газотурбинным наддувом инерционный наддув применялся в дизелях грузовых автомобилей -- система комбинированного наддува Шера (Рисунок 3).

Уровень повышения давления наддува при инерционном наддуве сравнительно невелик, поэтому такие системы обычно используются не для повышения максимальной мощности двигателя, а для улучшения протекания характеристики крутящего момента.

Рисунок 3- Система комбинированного наддува, предложенная Г. Шером

Другой известный способ подачи воздуха в цилиндры двигателя под повышенным давлением -- это использование волн давления выпускных газов в газодинамической машине «Компрекс» (наименование «Comprex» происходит от английских слов compression - сжатие и expanding - расширение) (Рисунок 4).

Принцип действия этой системы основан на том, что волна давления, проходящая через канал трубопровода, отражается на свободном конце отрицательно, т.е. как волна разрежения, а на закрытом конце как волна давления, и, наоборот, всасывающая волна на открытом конце отражается как волна давления, а на закрытом конце -- как волна всасывающая.

Система «Компрекс» состоит из ротора с осевыми каналами -- ячейками трапецеидального сечения, открытыми с торцов. Ротор, укрепленный в подшипниках и окруженный кожухом, приводится во вращение через ременную передачу от коленчатого вала двигателя. Мощность, необходимая для вращения ротора, невелика, т.к. она расходуется только на преодоление трения в подшипниках и вентиляционных потерь.

Рисунок 4- Схема устройства системы наддува «Компрекс» 1 -- выпускной трубопровод; 2 -- впускной трубопровод; ВНД -- воздух низкого давления; ВВД -- воздух высокого давления; ГВД -- газ высокого давления; ГНД -- газ низкого давления; Р -- ротор.

Воздушные и газовые каналы сходятся на торцевых сторонах корпуса. Осевые каналы -- ячейки ротора -- совпадают поочередно то с торцевыми стенками корпуса нагнетателя, то с впускными или выпускными трубопроводами, ведущими либо к двигателю, либо к атмосфере через воздухоочиститель или глушитель.

Привод агрегатов наддува может осуществляться:

1) от коленчатого вала ДВС прямо или через отключаемое устройство («приводные нагнетатели»);

2) от постороннего источника энергии, например, так называемый «е-привод» - от электродвигателя («электроподдерживаемый наддув»);

3) от турбины, использующей энергию отработавших газов ДВС (турбокомпрессоры).

В качестве приводных нагнетателей используют либо объемные нагнетатели (поршневые, роторно-шестеренчатые (типа «Рутс»), роторновинтовые, роторно-пластинчатые (шиберные)), либо лопаточные (как правило, центробежные). В приводном нагнетателе типа «Рутс» (Рисунок 5) два ротора особой формы, оси которых связаны между собой, при помощи шестерен соединенные с ведущей шестеренкой нагнетателя, которая, в свою очередь, связана со шкивом, приводимым в движение коленчатым валом посредством ременчатой передачи. Вращающиеся в противоположных направлениях роторы буквально «всасывают» воздух через входное отверстие, проталкивая воздушные потоки в т. н. распределительный отсек.

Рисунок 5- Приводной нагнетатель типа «Рутс»

Другой представитель механических нагнетателей - винтовой (нагнетатель Линхольма) по своей форме и структуре очень похож на нагнетатель Рутса (Рисунок 6), но на поверку отличается от него кардинально.

Рисунок 6- Приводной нагнетатель Линхольма

Формы роторов винтового нагнетателя более заострены, а сами они напоминают саморезы или винты мясорубки. При вращении роторов воздух, попадающий внутрь нагнетателя, прогоняется через этот конвейер спиралей и к выходу из корпуса уже находится в сжатом состоянии. Кроме того, воздух сжимается уже внутри устройства, а это значит, что неоткуда будет взяться тем силам противодействия, что выталкивают воздух назад в нагнетателе типа «Рутс».

Приводные центробежные нагнетатели (Рисунок 7) выполнены в форме улитки и обладают примерно теми же свойствами, что и турбины.

Рисунок 7- Приводной центробежный нагнетатель

Воздух, попадая в корпус нагнетателя, подхватывается лопастями рабочего колеса и, раскручиваясь, центробежными силами прижимается к внешним стенкам корпуса. На этом этапе воздушный поток достигает огромной скорости, но пока его давление слишком мало. Затем при помощи диффузора достигается обратный эффект: при выходе из нагнетателя скорость воздушного потока уменьшается, а давление, наоборот, возрастает, за счет «поджимающего» сзади воздуха. Эффективность центробежных нагнетателей пропорциональна оборотам двигателя. На низких оборотах прирост мощности практически не ощущается (хотя он и больше, чем у той же турбины), зато на средних и высоких мощность взмывает вверх.

Двигатели с газотурбинным наддувом часто называют «турбопоршневыми двигателями» или «комбинированными двигателями».

У турбокомпрессора (Рисунок 8) колесо компрессора и колесо турбины сидят на одном валу. Энергия потока отработавших газов, которая в обычных двигателях не используется, преобразовывается здесь в крутящий момент - выходящие из цилиндров двигателя отработавшие газы подаются на колесо турбины, где их кинетическая энергия преобразуется в механическую энергию вращения (крутящий момент). Колесо компрессора засасывает свежий воздух через воздушный фильтр, сжимает его и подает в цилиндры двигателя. Количество топлива, которое можно смешать с воздухом, при этом можно увеличить, что позволяет двигателю развивать большую мощность. Существует также множество других конструкций турбокомпрессоров.

Рисунок 8- Турбокомпрессор

3. Преимущества и недостатки различных видов наддува

Наддув приводными объемными нагнетателями обеспечивает быстрое реагирование на изменение скоростного режима двигателя.

Недостатки способа -- большие механические потери на малых нагрузках, сравнительно большие размеры и масса агрегатов наддува, наличие механической передачи, зачастую сложность размещения на двигателе. В значительной мере это относится и к центробежным приводным нагнетателям. Для наиболее рационального использования приводных объемных нагнетателей необходимо устройство, обеспечивающее отключение их от двигателя при малых нагрузках, когда нет необходимости в наддуве. Кроме того, механические нагнетатели снижают к.п.д. двигателя, т.к. на их привод расходуется часть мощности силового агрегата.

К достоинствам объемного нагнетателя типа «Рутс» относятся высокая эффективность на малых и средних оборотах, долговечность конструкции и низкий шум. Однако, при достижении определенного давления воздух начинает просачиваться назад, снижая к.п.д. системы.

Винтовые нагнетатели типа «Лисхольм» эффективны практически во всем диапазоне оборотов двигателя, компактны, бесшумны, но очень сложны в изготовлении, следовательно, дороги.

Волновые обменники «Компрекс» хотя и обеспечивают быстрое реагирование на изменение режима ДВС, не способны развивать высокие давления наддува, громоздки, требуют механического привода.

Наиболее удачным оказался газотурбинный наддув в широком диапазоне размеров ДВС от мотоциклетных до судовых мощностью в десятки тысяч киловатт. Преимущества этого вида наддува: более полное использование энергии топлива за счет расширения полезной площади термодинамического цикла, автоматическая подстройка (хотя и не всегда достаточная для транспортных двигателей) к изменению режима работы ДВС, сравнительно малые размеры и масса, относительная свобода размещения на двигателе. Недостатки турбонаддува - ухудшение приемистости двигателя -- в значительной мере нивелируются применением специальных мер регулирования давления наддува, уменьшением инерции вращающихся частей турбокомпрессоров.

4. Пределы повышения мощности путем наддува

Уменьшение теплоиспользования и механического к. п. д. приводит к тому, что мощность увеличивается медленнее, чем давление наддува"; в частности, при переходе от питания без наддува к питанию с наддувом 2 ата мощность увеличивается не вдвое, а приблизительно на 80%.

Отсюда возникает вопрос, каков целесообразный предел повышения давления наддува и не наступит ли такой момент, когда улучшение наполнения окажется не в состоянии компенсировать затрату мощности на нагнетатель и ухудшение теплоиспользования.

Результаты аналитического исследования этой проблемы подтверждают такие опасения и могут быть представлены графически (рис. 77).

Кривая р е дает изменение среднего эффективного давления в зависимости от давления наддува, отложенного по оси абсцисс, без учета затраты мощности на привод нагнетателя. Кривая р ек изображает часть среднего эффективного давления, затрачиваемого на привод; нагнетателя, также в зависимости от давления: наддува. Как видно по графику, рост р ек вначале отстает от роста р е, а при дальнейшем увеличении давления наддува разрыв между этими величинами быстро уменьшается. Чтобы получить среднее эффективное давление, соответствующее эффективной мощности двигателя, достаточно отнять от ординат кривой р е ординаты кривой р ек. Тогда получим кривую р е. изменения среднего эффективного давления двигателя в зависимости от давления наддува. Точкой перегиба а определяется наивыгоднейшее давление наддува -- около 5 ата, при котором среднееэффективное давление и мощность достигают максимума. График рис. 77 построен из расчета сохранения конечного давления сжатия равным 16,7 am при4 различных давлениях наддува; это соответствует степени сжатия е = 7,5 для двигателя без наддува. Повышенным давлениям наддува соответствуют уменьшенные степени сжатия; для критического давления наддува 5 атм степень сжатия е = 2,3. Кроме конечного давления сжатия, в основу графика положены еще другие конкретные данные. Поэтому нельзя считать 5 атм наивыгоднейшим давлением наддува для всех типов двигателей. Точные вычисления критического давления наддува вообще едва ли возможны, так как весьма трудно» учесть все условия работы машины, свойства топлива и тем более конструктивные особенности двигателя. Поэтому рис. 77 приводится только для того, чтобы показать существование предела увеличения мощности двигателя, снабженного приводным нагнетателем. В настоящее время применяются более низкие давления наддува по сравнению с предельным; значением, полученным на графике.

Следует заметить, что даже если не учитывать потерю мощности на привод нагнетателя, мощность двигателя все же не будет повышаться безгранично, так как чем сильнее сжимают горючую смесь в нагнетателе, тем меньшую степень сжатия можно использовать в двигателе при определенной детонационной стойкости топлива и, следовательно, в предельном случае все сжатие смеси происходит в нагнетателе, а степень сжатия (и степень: расширения) двигателя равна единице; при этом мощность двигателя равна нулю.

Таким образом, улучшение наполнения при наддуве компенсирует ухудшение термического к. п. д. и затрату мощности на нагнетатель только до некоторого значения давления наддува.

Вывод

Итак: цель наддува ДВС -- повышение его удельной (отнесенной к единице рабочего объема цилиндров, массы, габаритов) мощности за счет увеличения подачи топлива и соответственно требуемой для его сгорания массы воздуха. Увеличение удельной мощности ДВС позволяет сохранить его размеры и массу, стоимость, а также размеры и массу транспортного средства, на котором установлен двигатель, увеличить грузоподъемность, скорость.

Наддув ДВС с искровым зажиганием, как правило, с охлаждением наддувочного воздуха, повышает удельную мощность ДВС и улучшает динамические качества автомобиля.

В ряде стран автомобили с двигателями с наддувом и малым рабочим объемом цилиндров облагаются меньшими налогами. Увеличение коэффициента избытка воздуха при наддуве дизелей (особенно с охлаждением наддувочного воздуха) позволяет повысить эффективный к.п.д. (снизить удельный расход топлива) двигателя, а главное - уменьшить вредные выбросы с отработавшими газами.

Газотурбинный наддув уменьшает шум выпуска.

Использованная литература

1.Б.Н. Давыдков В.Н. Каминский Системы и агрегаты наддува транспортных двигателей- учебное пособие Москва 2011 год

2. wikipedia.org/wiki/Наддув

Размещено на Allbest.ru

...

Подобные документы

    Улучшение топливных, энергетических и ресурсных показателей автотракторных двигателей. Характеристика дизеля Д-245, обоснование системы наддува. Определение индикаторных и эффективных показателей двигателя. Схема и режимы работы системы наддува дизеля.

    дипломная работа , добавлен 18.11.2011

    Выбор давления наддува и схемы воздухоснабжения дизеля. Процесс наполнения цилиндра. Цикл Миллера. Расчетное среднее индикаторное давление. Эффективные показатели работы двигателя. Определение мощности агрегатов наддува. Кривошипно-шатунный механизм.

    курсовая работа , добавлен 06.01.2017

    Общая характеристика и принцип работы системы наддува отработанных газов дизеля М-756, его устройство и основные элементы. Порядок разборки, ремонта и сборки турбокомпрессора, впускных и выпускных коллекторов. Техника безопасности при проведении работ.

    курсовая работа , добавлен 19.05.2009

    Общая характеристика судовых двигателей внутреннего сгорания, описание конструкции и технические данные двигателя L21/31. Расчет рабочего цикла и процесса газообмена, особенности системы наддува. Детальное изучение топливной аппаратуры судовых двигателей.

    курсовая работа , добавлен 26.03.2011

    Особенности электростартерного пуска, его стадии, факторы влияния, устройства облегчения. Анализ внутрицилиндровых процессов. Расчеты ожидаемых параметров по температуре конца сжатия. Функциональная схема и принцип работы пускового наддува, его описание.

    дипломная работа , добавлен 23.03.2012

    Общие сведения о наддуве в дизельных двигателях. Контроль и диагностика процессов воздухоснабжения. Характеристика газотурбинного наддува четырехтактного дизеля. Регулировки, неисправности дизельных двигателей с турбонаддувом и способы их устранения.

    курсовая работа , добавлен 01.09.2012

    Общие принципы работы тепловозных дизелей. Идеальный цикл Карно. Схемы устройства, принципов работы и индикаторные диаграммы четырехтактного дизеля. Дизельное топливо и варианты наддува цилиндров. Состав сырой нефти. Схема роторного нагнетателя воздуха.

    курсовая работа , добавлен 27.07.2013

    Обоснование основных размеров D и S и числа цилиндров и дизеля. Расчет процесса наполнения, сгорания, сжатия и расширения. Расчет систем наддува и процесса газообмена. Индикаторные и эффективные показатели дизеля. Выбор числа и типа турбокомпрессора.

    курсовая работа , добавлен 25.03.2011

    История вопроса и пути совершенствования методов прямого сжигания твердых топлив в поршневых двигателях внутреннего сгорания. Теоретические аспекты выгорания твердого топлива в рабочем пространстве двигателя при его сжигании объемным и слоевым способом.

    книга , добавлен 17.04.2010

    Способы увеличения мощности двигателя: форсирование, увеличение степени сжатия и повышение момента двигателя за счет сдвига пика максимального давления. Переделка дизеля, для создания бензинового двигателя внутреннего сгорания с непосредственным впрыском.