Водородный двигатель автомобиля: лекарство от нефтяной зависимости. Toyota начала продажи автомобиля с водородным двигателем Как устроен водородный двигатель

Водород (H2) - это альтернативное топливо, которое получают из углеводородов, биомассы, мусора. Водород помещают в топливные элементы (что-то вроде бензобака для топлива) и автомобиль перемещается, используя энергию водорода.

Хотя водород пока рассматривается только как альтернативное топливо будущего, правительство и промышленность работают над чистым, экономичным и безопасным производством водорода для электрических автомобилей на топливных элементах (FCEV). FCEV уже поступают на рынок в регионах, где немного развита инфраструктура водородных заправок. Рынок также развивается для спецтехники: автобусов, погрузочно-разгрузочного оборудования (например, вилочных погрузчиков), наземного вспомогательного оборудования, средних и больших грузовиков.

Автомобили на водороде Toyota, GM, Honda, Hyundai, Mercedes-Benz понемногу появляются в дилерских сетях. Стоят такие машины в районе 4-6 миллионов рублей (Toyota Mirai - 4 млн. руб., Honda FCX Clarity - 4 млн. руб.).

Ограниченными сериями выпускаются:

  • BMW Hydrogen 7 и Mazda RX-8 hydrogen — двухтопливные (бензин/водород) легковые автомобили. Используют жидкий водород.
  • Audi A7 h-tron quattro — электро-водородный гибридный легковой автомобиль.
  • Hyundai Tucson FCEV
  • Ford E-450. Автобус.
  • Городские автобусы MAN Lion City Bus.

Испытывают:

  • Ford Motor Company — Focus FCV;
  • Honda — Honda FCX;
  • Hyundai Nexo
  • Nissan — X-TRAIL FCV (топливные элементы компании UTC Power);
  • Toyota — Toyota Highlander FCHV
  • Volkswagen — space up!;
  • General Motors;
  • Daimler AG — Mercedes-Benz A-Class;
  • Daimler AG — Mercedes-Benz Citaro (топливные элементы компании Ballard Power Systems);
  • Toyota — FCHV-BUS;
  • Thor Industries — (топливные элементы компании UTC Power);
  • Irisbus — (топливные элементы компании UTC Power);

Водород обилен в окружающей среде. Он хранится в воде (H2O), углеводородах (метан, CH4) и других органических веществах. Проблема водорода как топлива в эффективности его извлечения из этих соединений.

При извлечении водорода, в зависимости от источника, в атмосферу попадают вредные для окружающей среды выбросы. При этом, автомобиль работающий на водороде, в качестве выхлопных газов выделяет только водяной пар и теплый воздух, у него нулевой уровень выбросов.

ВОДОРОД В КАЧЕСТВЕ АЛЬТЕРНАТИВНОГО ТОПЛИВА

Интерес к водороду как альтернативному транспортному топливу обусловлен:

  • способностью использовать топливные элементы в FCEV с нулевым уровнем выбросов;
  • потенциалом для внутреннего производства;
  • быстрой заправкой автомобилей (3-5 минут);
  • по расходу и цене, топливные элементы до 80 процентов эффективнее обыкновенного бензина

В Европе стоимость заправки полного бака водорода емкостью в 4.7 килограмма обойдется в 3 369 рублей (717 рублей за килограмм). На полном баке Toyota Mirai в среднем проезжает 600 километров, итого 561 рубль на 100 километров. Для сравнения, цена 95-го бензина равна 101 рубль, т.е. 10л бензина обойдется в 1010 рублей или 6 060 рублей за 600 километров. Цены на 2018 год.

Данные розничных водородных заправочных станций, собранные и проанализированные Национальной лабораторией возобновляемых источников энергии, показывают, что среднее время на заправку FCEV, составляет менее 4 минут.

Топливный элемент, соединенный с электродвигателем, в два-три раза быстрее и экономичнее, чем двигатель внутреннего сгорания, работающий на бензине. Водород используют и как топливо для двигателей внутреннего сгорания (BMW Hydrogen 7 и Mazda RX-8 hydrogen). Однако, в отличие от FCEV, такие двигатели выпускают вредные выхлопные газы, не такие мощные как водородные и быстрее подвержены износу.

В 1 килограмме газообразного водорода столько же энергии как в бензине объемом 1 галлон (6,2 фунта, 2,8 килограмма). Поскольку в водороде низкая объемная плотность энергии, он хранится на борту транспортного средства в виде сжатого газа. В машинах водород хранится в резервуарах высокого давления (топливных элементах), способных хранить водород на 5000 или 10000 фунтов на квадратный дюйм (psi). Например, FCEV, выпускаемые автопроизводителями и доступные в автосалонах, имеют емкость в 10 000 фунтов на квадратный дюйм. Розничные диспенсеры, которые в основном расположены на автозаправочных станциях, заполняют такие резервуары за 5 минут. Разрабатываются и другие технологии хранения, включая химическое соединение водорода с металл гидридом или низкотемпературными сорбционными материалами.

Заправочных станций на водородные машины почти нет, следите за динамикой - в 2006 году в мире насчитывалось 140 заправок, а к 2008 году 175. Чувствуете, за 2 года построено 35 станций, 45% из которых находятся в США и Канаде. К 2018 году число станций равно приблизительно 300 единицам. Еще есть мобильные станции и домашние, точное число которых не известно.

КАК РАБОТАЕТ ТОПЛИВНЫЙ ЭЛЕМЕНТ

Прокачивая кислород и водород через катоды и аноды, которые контактируют с платиновым катализатором, происходит химическая реакция, в результате которой получается вода и электрический ток. Набор из нескольких элементов (ячеек) необходим, чтобы увеличить заряд в 0,7 вольт в одной ячейке, что приводит к увеличению напряжения.

Ниже смотрите схему, как получается топливный элемент.


ГДЕ ЗАПРАВЛЯТЬ ВОДОРОДОМ АВТОМОБИЛИ

Революция водородных топливных элементов не начнется без достаточного потребителю количества водородных АЗС, поэтому отсутствие инфраструктуры водородных заправочных станций по-прежнему тормозит развитие водорода как . Американцы уже давно видят на своих улицах машины, передвигающиеся на топливных элементах, например, Honda FCX Clarity, которые каждый день перевозят людей на работу и с работы. Почему же до сих пор нет заправочных станций?

Хотим отметить, что в статье обсуждается американский рынок, ибо в России, о водородном топливе для автомобилей пока говорить нечего, его тут просто нет. И причина не в лобби нефтяных магнатов, просто в России не та экономика, чтобы АВТОВаз начал исследования в этой области. Япония и Америка, в отличие от России, уже давно исследуют этот альтернативный источник топлива и ушли далеко вперед (первый автомобиль на водороде в США появился в 1959 году)

Рядовому Американцу, в зависимости, где он живет, возможно, придется немного подождать появления водородных заправочных станций. Еще пять лет назад общественное мнение сходилось на том, что «водородные автомобильные дороги» будут стимулировать будущее. В США планировалась стройка станций вдоль Калифорнийского побережья, от Мэна до Майами.

ТЕНДЕНЦИЯ СОЗДАНИЯ ЗАПРАВОЧНЫХ ВОДОРОДНЫХ СТАНЦИЙ

Северная Америка, Канада

Пять станций построены в Британской Колумбии (западная провинция Канады) с 2005 года. Больше станций строить в Канаде не будут, проект завершился в марте 2011 года.

Соединенные Штаты

Аризона: прототип водородной заправочной станции построен по всем правилам безопасности для окружающей среды в Финиксе, чтобы доказать возможность строительства таких заправочных станций в городских районах.

Калифорния: В 2013 году губернатор Браун подписал законопроект о финансировании 20 миллионов в год в течение 10 лет на 100 станций. Комиссия по энергетике Калифорнии выделила 46,6 млн. долларов США на 28 станций, которые будут завершены в 2016 году, что наконец приблизит отметку в 100 станций в заправочной сети Калифорнии. По состоянию на август 2018 года в Калифорнии открыто 35 станций и еще 29 ожидается до 2020 года.

Гавайи открыли первую водородную станцию в Хикаме в 2009 году. В 2012 году компания Aloha Motor Company открыла водородную станцию в Гонолулу.

Массачусетс: французская компания Air Liquide завершила строительство новой водородной заправочной станции в Мэнсфилде в октябре 2018 года. Единственная водородная заправочная станция в штате Массачусетс расположенная г. Биллерика (40 243 жителей), в штаб-квартире компании Nuvera Fuel Cells, изготавливающей водородные топливные элементы.

Мичиган: В 2000 году Ford и Air Products открыли первую водородную станцию в Северной Америке в Дирборне, штат Мичиган.

Огайо: В 2007 году в кампусе Государственного университета штата Огайо в Центре автомобильных исследований открылась водородная заправочная станция. Единственная на все Огайо.

Вермонт: водородная станция построена в 2004 году в городе Берлингтон. Проект частично профинансирован через Программу водородного водоснабжения Министерства энергетики Соединенных Штатов.

Азия

Япония: В период с 2002 по 2010 год в Японии по проекту JHFC было введено несколько заправочных станций с водородом для тестирования технологий производства водорода. В конце 2012 года было установлено 17 водородных станций, в 2015 году установлено 19. Правительство рассчитывает создать до 100 водородных станций. В бюджете для этого выделено 460 млн. долларов США, что покрывает 50% расходов инвесторов. JX Energy установило 40 станций к 2015 году и еще 60 в период 2016-2018 годов. Toho Gas и Iwatani Corp установили 20 станций в 2015 году. Тойота и Air Liquide создали совместное предприятие для строительства 2 водородных станций, которые построили в 2015 году. Осака-газ построили 2 станции за 2014-2015 годы.

Южная Корея: В 2014 году, в Южной Корее введена в эксплуатацию одна водородная станция еще на 10 станций, запланированных на 2020 год.

Европа

По состоянию на 2016 год в Европе работают более 25 станций, способных заполнять 4-5 автомобилей в день.

Дания: В 2015 году в сети водородных сетей было 6 общественных станций. H2 Logic, входящая в NEL ASA, строит завод в Хернинге для выпуска 300 станций в год, каждая из которых может выдавать 200 кг водорода в день и 100 кг за 3 часа.

Финляндия: В 2016 году в Финляндии работают 2 + 1 (Voikoski, Vuosaari) общественные станции, одна из них подвижная. Станция заправляет автомобиль 5 килограммами водорода за три минуты. Завод по созданию водорода работает в г. Коккола, Финляндия.

Германия: По состоянию на сентябрь 2013 года работает 15 общедоступных водородных станций. Большинство, но не все из этих станций эксплуатируются партнерами Clean Energy Partnership (CEP). По инициативе H2 Mobility число станций в Германии должно возрасти до 400 станций в 2023 году. Цена проекта 350 миллионов евро.

Исландия: Первая коммерческая водородная станция открыта в 2003 году в рамках инициативы страны по движению в сторону "водородной экономики".

Италия: С 2015 года в Больцано открыта первая коммерческая водородная станция.

Нидерланды: Нидерланды открыли первую общественную автозаправочную станцию 3 сентября 2014 года в Роуне близ Роттердама. Станция использует водород из трубопровода из Роттердама в Бельгию.

Норвегия: В феврале 2007 года открыта первая в Норвегии водородная заправочная станция Hynor. Uno-X в партнерстве с NEL ASA планирует построить до 20 станций до 2020 года, включая станцию с производством водорода на месте из избыточной солнечной энергии.

Объединенное Королевство

В 2011 году открылась первая общественная станция в Суиндоне. В 2014 году HyTec открыл станцию London Hatton Cross. 11 марта 2015 года проект по расширению сети водородных сетей в Лондоне открыл первый супермаркет, расположенный на заправочной станции для водорода в Sensbury"s Hendon.

Калифорния впереди планеты всей в области финансирования и строительства водород -заправочных станций для FCEV. По состоянию на середину 2018 года в Калифорнии было открыто 35 розничных водородных станций, а еще 22 - на разных этапах строительства или планирования. Калифорния продолжает финансировать строительства инфраструктуры, а Энергетическая комиссия имеет право выделять до 20 млн. долларов США в год до 2024 года, пока не заработает 100 станций. Для северо-восточных штатов планируют построить 12 розничных станций. Первые откроются к концу 2018 года. Некоммерческие станции в Калифорнии и станции построенные в остальных штатах США обслуживают легковые FCEV, автобусы, а также используют для исследовательских и демонстрационных целей.

Расходы на содержание водородных станций

Водородным заправкам не так-то просто заменить обширную сеть бензозаправочных станций (в 2004 году 168 000 точек в Европе и США). Замена бензиновых станций на водородные стоит полтора триллиона долларов США. При этом цена обустройства водородной топливной сети в Европе может быть в пять раз ниже чем цена заправочной сети для электромобилей. Цена одной EV - станции от 200 000 до 1 500 000 рублей. Цена водородной станции - 3 миллиона долларов. При этом, водородная сеть будет все равно дешевле сети станций для электромобилей по окупаемости. Причина в быстрой заправке водородных автомобилей (от 3 до 5 минут). На миллион автомобилей на топливных водородных элементах требуется меньше водородных станций, чем зарядных станций на миллион аккумуляторных электромобилей.

В будущем вопрос заправки водородом будет решаться для человека в зависимости от его места жительства. АЗС будут заправлять автомобили водородом, доставленным на танкерах с крупных предприятий по реформингу топлива. Поставки с таких предприятий ничем не будут уступать поставкам бензина с нефтеперегонных заводов. В перспективе, местные водородные заводы научаться извлекать пользу из местных ресурсов и из возобновляемых источников энергии.

СПОСОБЫ ДОБЫЧИ ВОДОРОДА

  • паровая конверсия метана и природного газа;
  • электролиз воды;
  • газификация угля;
  • пиролиз;
  • частичное окисление;
  • биотехнологии

Паровой риформинг метана

Способ отделения водорода путем парового метанового реформинга применим к ископаемому топливу, например, к природному газу - его нагревают и добавляют катализатор. Природный газ не возобновляемый источник энергии, но пока он есть и добывается из недр земли. Министерство энергетики утверждает, что выбросы автомобилей, работающих на реформированном водороде, вдвое меньше, чем у автомобилей, работающих на бензине. Производство реформированного водорода уже запущен на полную катушку и добывать водород таким способом дешевле, чем водород из других источников.

Газификация биомассы

Водород также добывают из биомассы - сельскохозяйственных отходов, отходов животноводства и сточных вод. Используя процесс, который называется газификация, биомассу помещают под воздействие температуры, пара и кислорода чтобы образовать газ, который после дальнейшей обработки дает чистый водород. «Существуют целые полигоны для сбора сельскохозяйственных отходов - готовые источники водорода, потенциал которых недооценен и тратится впустую», сетует директор по политике Ассоциации по исследованию водородной энергетики и топливных элементов, Джеймс Варнер.

Электролиз

Электролиз - процесс отделение водорода из воды при помощи электрического тока. Этот способ звучит проще, чем возня с ископаемым топливом и отходами животноводства, но у него есть недостатки. Электролиз конкурентоспособен в тех районах, где электричество дешевое (в России этом могла бы быть Иркутская область - 8 электростанций на область, 1 рубль 6 копеек за киловатт-час).

Солнечные водородные станции компании Honda используют энергию солнца и электролизер, чтобы отделить «Н» от «О» в Н2О. После отделения водород хранится в баке под давлением в 34.47 МПа (мегапаскаль). Используя только солнечную энергию, станция создает 5 700 литров водорода в год (этого топлива достаточно для одного автомобиля со средним годовым пробегом). При подключении к электрической сети, станция выдает до 26 тысяч литров в год.

«Как только водород получит нишу на топливном рынке, и как только на него будет спрос, станет ясно, какой способ извлечения водорода выгоден», говорит директор по политике Ассоциации по исследованию водородной энергетики и топливных элементов Джеймс Варнер. «Некоторые из способов производства водорода потребуют новых законов, регулирующих его добычу. Если водород будет пользоваться постоянным спросом, увидите, как начнут регулировать правила пользования сельскохозяйственными отходами и водой для электролиза».

Основную часть водорода, извлекаемого в Соединенных Штатах каждый год, применяют для переработки нефти, обработки металлов, производства удобрений и переработки пищевых продуктов.

УДЕШЕВЛЕНИЕ ТЕХНОЛОГИЙ ВОДОРОДНЫХ АВТОМОБИЛЕЙ И ИХ РАЗВИТИЕ

Еще одно препятствие для производителей автомобилей на водородном топливе - цена водородных технологий. Например, набор топливных элементов для автомобилей до настоящего момента, опирается на платину в качестве катализатора. Если приходилось покупать колечко из платины для любимой, высокая цена на метал вам известна.

Ученые из Лос-Аламосской национальной лаборатории доказали, что замена этого дорогого металла на более распространенные - железо или кобальт, в качестве катализатора возможна. А ученые из Case Western Reserve University разработали катализатор из углеродных нанотрубок, которые в 650 раз дешевле, чем платина. Замена платины как катализатора в топливных элементах, заметно снизит стоимость технологии водородных топливных элементов.

На этом исследования по совершенствованию водородного топливного элемента не заканчиваются. Mercedes разрабатывает технологию сжатия водорода до давления в 68.95 МПа (мегапаскаль), чтобы на борту автомобиля помещалось больше топлива, с передовым как дополнительным хранилищем энергии. "Если все получится, у автомобилей на водороде диапазон движения превысит 1000 км." считает доктор Герберт Колер, вице-президент Daimler AG.

Министерство энергетики США утверждает, что себестоимость сборки автомобилей с топливным элементом снижены на 30 процентов за последние три года и на 80 процентов за последнее десятилетие. Срок службы топливных элементов увеличился вдвое, но этого недостаточно. Для конкурентоспособности с электромобилями срок службы топливных элементов нужно увеличить в два раза. Нынешние автомобили с водородным топливным элементом, работают около 2 500 часов (или примерно 120 000 км), но этого мало. «Чтобы конкурировать с другими технологиями, нужно достичь результата в 5 000 часов, как минимум», говорит один из членов ученого совета министерской программы по топливным элементам.

Развитие технологий водородных топливных элементов снизит себестоимость производство автомобилей за счет упрощения механизмов и систем, но выгоду производители получат только при серийном выпуске. Препятствием на пути к массовому выпуску автомобилей на водороде, служит то, что нет оптовых поставок запчастей для автомобилей с водородным топливным элементом. Даже автомобиль FCX Clarity, который уже выпускается серией, не обеспечен дополнительными запчастями по оптовым ценам (просто они не пользовались поиском от ). Автопроизводители решают проблему по-своему, устанавливают топливные элементы водорода в дорогие модели для обкатки. Дорогие автомобили выпускаются в меньшем количестве, чем бюджетные, а значит и проблем с поставкой запчастей к ним нет. «Мы внедряем "водородную технологию" в люксовые автомобили и отслеживаем как она себя показывают на практике. Пока рынок принимает водородные автомобили, как лет 10 назад принимал технологию гибридов, автопроизводители в это время наращивают объемы водородных моделей, спускаясь по цепочке к бюджетным авто», говорит Стив Эллис, менеджер по продажам автомобилей с топливным элементом компании Honda.

ТОПЛИВНЫЕ ЭЛЕМЕНТЫ С ВОДОРОДНЫМ ТОПЛИВОМ В ПОЛЕВЫХ УСЛОВИЯХ

Начиная с 2008 года, компания Honda начала ограниченную лизинговую программу для 200 седанов FCX Clarity, которые передвигаются на водородных топливных элементах. Как итог, только 24 клиента из Южной Калифорнии, США, платили в течение трех лет ежемесячный взнос в 600 долларов. В 2011 году срок аренды закончился, и компания Honda продлила договора с этими клиентами и подключила новых к исследовательской кампании. Вот то, что компания узнала нового за время исследований:

  1. Водители FCX Clarity без проблем передвигались на короткие дистанции через город Лос-Анджелес и его округи (Honda утверждает, что диапазон движения FCX - 435 км).
  2. Отсутствие необходимой инфраструктуры - основное неудобство для арендаторов, которые живут вдалеке от водородных заправочных станций в Калифорнии. Большинство станций расположено недалеко от Лос-Анджелеса, привязывая автомобили к 240-километровой зоне.
  3. В среднем водители проезжали 19,5 тысяч км за год. Один из первых арендаторов только что пересек показатель в 60 тысяч км.
  4. Продавцы, которые отпускают в лизинг автомобили FCX Clarity проходят специальную подготовку "Как обучать клиентов обращаться с водородным автомобилем". «Продавцам задают вопросы, каких они прежде не слышали», говорит менеджер по продажам и маркетингу автомобилей Honda с топливными элементами, Стив Эллис.

ПОЛУЧИТ ЛИ "ВОДОРОДНАЯ" ПРОГРАММА ПОДДЕРЖКУ ПРАВИТЕЛЬСТВА?

Производители автомобилей и строители заправочных сетей сходятся во мнении, что снизить затраты в краткосрочной перспективе без вмешательства со стороны государства не выйдет. Что в США, однако, представляется маловероятным, при всех описанных денежных вливаниях местной администрации Штатов и Министерств.

С министром энергетики Стивеном Чу, администрация Обамы неоднократно пыталась сократить финансирование программы развития водородных топливных элементов, но до сих пор все эти сокращения отменял конгресс.

Акцент на аккумуляторных технологиях сторонникам водорода кажется недальновидным. «Это взаимодополняющие технологии», говорит Стив Эллис, представитель компании Honda. Технология, разработанная для FCX, например, развернута и на электромобиль Fit. «Считаем, что водородные топливные элементы в сочетании с электромобилями переплюнут все альтернативные источники энергии возглавив этого десятилетия».

Недовольны и те, кто платит из своего кармана за возведение новых заправочных станций. Говорят, что не отказались бы от помощи государства до тех пор, пока не увеличится спрос на водородный вид топлива и не снизятся затраты на возобновляемые источники энергии.

Том Салливан верит в энергетическую независимость настолько сильно, что вложил все деньги, полученные от сети супермаркетов в компанию SunHydro, компанию, которая строит водородные заправочные станции на солнечных батареях. Том считает, что целевое снижение налогов могло бы стимулировать предпринимателей вкладывать деньги в строительство водородных станций, работающих от солнечной энергии. «Необходим стимул, чтобы люди вкладывались в такие предприятия», говорит Том. «Люди в трезвом уме, вероятно, не станут вкладывать деньги в строительство водородных заправочных станций».

Для Стива Эллиса из компании Honda этот вопрос как практический, так и политический. «Технология водородного топлива помогает обществу сэкономить на топливе и сберечь экологию", говорит Стив. «Если это так, то поможет ли общество самому себе перейти на альтернативный вид топлива?»

Минус альтернативных источников топлива уже применяемых в автомобилях, типа растительного масла (об этом подробней тут) или природного газа, в том, что они не возобновляемы, в отличие от водородного топлива.

ИТОГ

Минусы водородного топлива:

  • добыча водорода пока не совершенна и загрязняет окружающую среду;
  • обустройство сети водородных заправочных станций стоит дорого (полтора триллиона долларов США);
  • владельцы машин привязаны к заправочным станциям (вы заложник штата Калифорния, дальше не уедешь).

Плюсы водородного топлива:

  • у водородных автомобилей нулевой уровень выбросов, бережем природу;
  • быстрая заправка (от 3 до 5 минут);
  • экономически водород выигрывает у бензиновых автомобилей по цене расхода топлива (600 км за 3 369 рублей на водороде против 6 060 рублей за путешествие на бензине).

А теперь настало время научного видео!

Современное автомобилестроение развивается с акцентом на производство более экологичных транспортных средств. Это обусловлено развернувшейся во всём мире борьбой за чистоту атмосферного воздуха путём снижения выбросов углекислого газа. Постоянный рост цен на бензин также заставляет производителей искать другие источники энергии. Многие ведущие автостроительные концерны постепенно переходят к серийному производству машин, работающих на альтернативном топливе, что уже в самом ближайшем будущем приведёт к появлению на автодорогах мира достаточного количества не только электрокаров, но также авто с двигателями, работающими от водородного топлива.

Принцип работы водородных автомобилей

Авто, работающее на водороде, призвано снизить атмосферные выбросы углекислого газа, а также других вредных примесей. Использование водорода для приведения в движение колёсного транспортного средства, возможно двумя различными способами:

  • применением водородного двигателя внутреннего сгорания (ВДВС);
  • установкой силового электрического агрегата, работающего от водородных элементов (ВЭ).

В то время, как мы привыкли заполнять бензином или дизельным топливом свой автомобиль, новое чудо – работает на наиболее распространенном элементе во вселенной - водороде

ВДВС представляет собой аналог широко используемых сегодня двигателей, топливом для которых является пропан. Именно эту модель движка проще всего перенастроить для работы от водорода. Принцип его действия тот же, что у бензинового двигателя, только в камеру сгорания вместо бензина поступает сжиженный водород. Авто с ВЭ – это, фактически, электрокар. Водород здесь выступает лишь сырьём для выработки электроэнергии, необходимой, чтобы привести в действие электрический мотор.

Водородный элемент состоит из следующих частей:

  • корпуса;
  • мембраны, пропускающей только протоны – она делит ёмкость на две части: анодную и катодную;
  • анода, покрытого катализатором (палладием или платиной);
  • катода с тем же катализатором.

Принцип действия ВЭ построен на физико-химической реакции, состоящей в следующем:


Таким образом, при движении автомобиля не выделяется углекислый газ, а лишь водяной пар, электричество и окись азота.

Основные характеристики водородных автомобилей

Главные игроки автомобилестроительного рынка уже имеют опытные образцы своей продукции, использующие водород в качестве топлива. Можно уже определённо выделить отдельные технические характеристики таких машин:

  • максимально развиваемую скорость до 140 км/час;
  • средний пробег от одной заправки 300 км (некоторые производители, например, Тойота или Хонда заявляют вдвое большую цифру – 650 или 700 км, соответственно, на одном лишь водороде);
  • время разгона до 100 км/час с нуля – 9 секунд;
  • мощность силовой установки до 153 лошадиных сил.

Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9.6 секунд и, самое главное, она способна проехать без дополнительной дозаправки 482 км

Совсем неплохие параметры даже для бензиновых двигателей. Пока ещё не наметился крен в сторону ВДВС, использующего сжиженный Н2 или машин на ВЭ, и непонятно, какой из этих типов двигателей достигнет лучших технических характеристик и экономических показателей. Но сегодня больше выпущено моделей машин с электроприводом, работающих от ВЭ, которые дают больший КПД. Хотя расход водорода для получения 1 кВт энергии меньше в ВДВС.

К тому же переоснащение ДВС под водород для увеличения КПД требует изменения системы зажигания установки. Не решена пока проблема быстрого прогорания поршней и клапанов из-за более высокой температуры горения водорода. Здесь всё решит дальнейшее развитие обеих технологий, а также динамика цен при переходе к серийному производству.

Плюсы и минусы авто, работающих на водороде

Среди основных преимуществ водородомобилей можно отметить:

  • высокую экологичность, заключающуюся в отсутствии большинства вредных веществ в выхлопах, характерных для работы бензинового двигателя, – углекислого и угарного газа, окиси и диоксидов серы, альдегидов, ароматических углеводородов;
  • более высокий КПД, по сравнению с бензиновыми авто;

В целом авто имеет амбиции покорить весь мир
  • меньший уровень шума от работы двигателя;
  • отсутствие сложных, ненадёжных систем топливоподачи и охлаждения;
  • возможность использования двух видов топлива.

Кроме того, машины, работающие на ВДВС, имеют меньший вес и больше полезного объёма, несмотря на необходимость установки баллонов для топлива.

К недостаткам водородомобилей можно отнести:

  • громоздкость силовой установки при использовании топливных элементов, снижающей маневренность автомобиля;
  • высокую стоимость самих водородных элементов из-за входящих в их состав палладия или платины;
  • несовершенство конструкции и неопределённость в материале изготовления баков для водородного топлива;
  • отсутствие технологии хранения водорода;
  • отсутствие заправок водородом, инфраструктура которых очень слабо развита во всём мире.

Однако, с переходом к массовому выпуску авто, оснащённых водородными силовыми установками, большая часть этих недостатков наверняка будет устранена.

Какие автомобили, использующие водород, уже выпускаются

Производством машин на водородном топливе занимаются такие ведущие мировые автомобилестроительные компании, как BMW, Mazda, Mercedes, Honda, MAN и Toyota, Daimler AG и General Motors. Среди опытных моделей, а у некоторых производителей уже и мелкосерийных, имеются автомобили, функционирующие только на водороде, или с возможностью использования двух видов топлива, так называемые гибриды.

Уже выпускаются такие модели водородомобилей, как:

  • Ford Focus FCV;
  • Mazda RX-8 hydrogen;
  • Mercedes-Benz A-Class;
  • Honda FCX;
  • Toyota Mirai;
  • Автобусы MAN Lion City Bus и Ford E-450;
  • гибридный автомобиль на два вида топлива BMW Hydrogen 7.

Сегодня можно сказать определённо, что, несмотря на имеющиеся трудности (новое всегда с трудом пробивает себе дорогу), будущее принадлежит более экологичным автомобилям. Автокары, работающие на водородном топливе, составят достойную конкуренцию электромобилям.

Авто компании разрабатывают новые виды двигателей для автомобилей будущего. Кто-то ставит ставку на электромоторы, а кто-то разрабатывает водородные двигатели. Рассмотрим водородный двигатель и его преимущества.

Как работает?

Автомобиль на водородном топливе имеет так называемый топливный элемент или по-научному — электрохимический генератор. Это своего рода «вечная» батарейка, внутри которой идет реакция окисления водорода и на выходе получается чистый водяной пар, азот и электричество. Т.е. выхлоп такого водородного автомобиля экологический чистый, в нем содержание углекислого газа CO2 равняется нулю.

Автомобиль с топливными элементами, по сути электромобиль. Только с более компактной батареей: ёмкость литий-ионного аккумулятора в 10 раз меньше, чем обычного электромобиля. Здесь батарея нужна только в качестве буфера для хранения энергии, получаемой при рекуперативном торможении и для быстрого холодного старта.

Дело в том, что главный источник энергии — блок топливных элементов — выходит на рабочий режим не сразу. На первых прототипах водородных машин для этого требовалось около полутора часов. На современных — не более 2 минут, чтобы начать превращение водорода и воздуха в водяной пар, азот и электроэнергию. Но на прогрев до рабочей температуры, когда КПД установки достигает 90% уходит от 15 минут до часа в зависимости от окружающей температуры.

В баллонах хранится 5 кг водорода, обеспечивающие запас хода до 500 км. Полная заправка баллонов займет три минуты.

Главные недостатки

Главный недостаток — высокая себестоимость. Помимо электрохимического генератора, который при массовом производстве может стоить дешевле батарей для электромобилей, нужны еще прочные и легкие баки. Для этого используют дорогой углепластик.

Следующий серьезный недостаток — энергетическая эффективность. Если использовать водород как только как промежуточное звено в цепочке доставки энергии от электростанции к колесам автомобиля, то КПД составит не более 30% с учетом потерь на перекачку и охлаждение водорода перед заправкой. В отличие от 70-80% у электромобилей.

Если получать водород из попутного нефтяного газа, то КПД становится несравнимо выше — до 70%. Правда, ценой выбросов углекислого газа.

Если сейчас производить автомобили с водородными двигатели, то где взять заправки? В Европе количество водородных заправок можно пересчитать по пальцам, у нас их вовсе нет. Инженеры для таких случаев изобрели бивалентный двигатель, который может одновременно работать как на водородном топливе, так и на бензине. Теперь владелец данного автомобиля не будет зависеть от наличия на заправке водородного топлива.

Вот глядишь, лет через пять-десять, когда количество водородных заправок в Европе возрастет, тогда водородомобили получат жизнь. Пока реалии сегодняшнего дня не радужны. Взять хотя бы стоимость машины на чисто водородных элементах — она превышает стоимость обычного автомобиля почти в два раза. И на 20 процентов дороге гибридных версий.

На сегодняшний день практически все мировые автопроизводители ведут активные разработки машин, работающих на экологически чистом виде топлива. Специалисты говорят, что уже через 15-20 лет мир полностью перейдет на такой вид транспорта. Пока лидерство в этом деле сохраняет компания «Тойота». После выпуска знаменитого «Примуса» японцы решили пойти дальше и разработать еще один экологически чистый автомобиль - Toyota Mirai с водородным двигателем. В сегодняшней статье мы рассмотрим все особенности данной новинки, а также перечислим все преимущества и недостатки использования водородных машин.

Характеристика

«Тойота Мирай» - это один из первых седанов японского производства, который компания решила выпускать в серийном масштабе. Кстати, решение назвать данную модель Mirai было вполне оправданным, ведь в переводе с японского это слово означает «Чистое будущее».

Производитель утверждает, что первая серийная водородная Toyota отличится от своих аналогов большим запасом хода, который составит 480 километров. Этого вполне хватит как для повседневной эксплуатации в черте города, так и для семейных путешествий на большие расстояния. Но что касается дальних поездок, пока совершить их на таком авто не удастся. И здесь вопрос не в надежности конструкции (как всегда, японцы сделали машину качественно и «на века»), а в отсутствии нужных АЗС. Но об этом мы поговорим несколько позже.

Стоит отметить, что «Мирай» не самый первый в мире автомобиль с водородным двигателем. «Тойота» занимается разработкой гибридных моделей авто начиная с 1997 года. Именно тогда мировая публика увидела с водородным двигателем в виде концепт-внедорожника модели FCHV. Однако запускать его в масштабное серийное производство японцы так и не решились. Чаще всего данный джип можно было встретить в госучреждениях и организациях, которые занимались тестированием данного вида транспорта. Кстати, объединяет BMW и Toyota. Немцы заключили контракт с японскими инженерами и до 2020 года планируют создать новый экологически чистый седан BMW Hydrogen 7-й серии.

Плюсы водородного автомобиля

Для начала о преимуществах. Начнем с того, что двигатель на водородном топливе не выделяет никаких загрязняющих веществ, в отличие от дизеля и бензина. Стоит отметить и низкую себестоимость эксплуатации данного вида транспорта. Само топливо (водород) можно получать как в малых, так и крупных масштабах. Это позволит значительно стабилизировать ситуацию с постоянно меняющимися ценами на горючее и более рационально распределять в мире.

Какие имеет минусы двигатель на водородном топливе?

Теперь поговорим о недостатках. Основной минус данного вида транспорта заключается в том, что водородный двигатель («Тойота FCV» в том числе) более взрывоопасен, чем классические дизельные и бензиновые аналоги. Это объясняется особым химическим составом водорода. Кстати, кроме взрывоопасности он отличается высокой летучестью. Эта характеристика значительно усложняет транспортировку и заправку автомобилей водородом. Также эксперты говорят, что обслуживание подобной установки будет более затратным, чем например ремонт дизельного ДВС (в силу малого количества работников, знающих толк в данной сфере). Ну и, конечно же, отсутствие водородных заправочных станций. В мире таких лишь единицы, потому использовать сейчас такие автомобили весьма трудно (тем более что заправить такую машину можно только при помощи специального оборудования).

Вопросы снабжения

Основная проблема водородных авто - отсутствие АЗС, на которых их можно было бы заправлять. Именно поэтому миру более актуальны электрокары, так как они заряжаются от обыкновенной розетки и даже на ходу, если на крыше есть солнечная батарея. Но производство водородных станций уже набирает темпы. Уже известно о планах строительства 20 таких АЗС в Калифорнии. Если продажи будут расти, количество заправок увеличат вдвое. Кстати, этот штат был выбран неспроста - именно в Калифорнии начнутся старты продаж водородных «Тойот». Но о продажах мы поговорим в конце статьи, а пока давайте рассмотрим экстерьер новинки.

Дизайн

Внешний облик новой «Тойоты Мирай» весьма впечатляющий. Сразу в глаза бросается массивный агрессивный «передок» с суровым широким бампером и раскосыми фарами. Решетка радиатора - это, пожалуй, самый мелкий и незначительный элемент в экстерьере.

Но даже на таком маленьком кусочке пластика японцам удалось разместить свою фирменную эмблему, выполненную в хромированном стиле. Машина имеет хорошую площадь остекления. Особенно это касается лобового стекла. Водитель не будет чувствовать «мертвых зон», так как все события вокруг видны теперь как на ладони. Кузов имеет как угловатые, так и сглаженные, аэродинамические черты. Все это делает внешний облик седана очень свежим, современным и уникальным.

Интерьер

Внутренняя часть автомобиля словно часть космического корабля - масса кнопок, экранов, датчиков и всякой другой всячины. Что интересно, японцы не решились тратить деньги на разработку двух вариантов компоновки интерьера - для европейского и для внутреннего рынка. Проблему с перестановкой руля они решили очень просто, разместив все важные информационные приборы посредине торпеды.

Сама панель размещена впритык к лобовому стеклу и растянута по всей его ширине. Дальше от нее размещен массивный бортовой компьютер, который оснащен встроенной функцией навигатора. Ниже него есть еще один дисплей. А разделяют их два широких воздуховода. Такие же дублируются по бокам у зеркал, только с хромированной окантовкой в углу. Рулевое колесо тоже оснащено кнопками дистанционного управления. Ручки КПП в салоне нет - вероятнее всего, используется вариатор или АКПП. Динамики размещены в дверях, также как и кнопки управления электростеклоподъемниками. Рулевое колесо имеет удобный хват. В целом, компоновка салона очень эргономичная. И даже невзирая на массу кнопок (тем более что половина из них сенсорные), он не перегружен лишними элементами и в некоторой степени кажется аскетичным.

Технические характеристики

«Тойота» выпустила машину с водородным двигателем, имеющим большой запас мощности. Силовая установка, по словам производителей, будет иметь 153 лошадиные силы, чего вполне достаточно как для автомобиля такого класса. О других двигателях японцы не говорят, и, скорее всего, на рынок выйдет только одна модификация новинки со 153-сильным экологически чистым агрегатом. Водородный двигатель («Тойота Мирай» 2015 года выпуска) работает на специальных топливных ячейках. Внутри последней происходит реакция, в которой принимают участие водород и кислород. В результате химического взаимодействия вырабатывается мощная энергия, которая питает электромотор.

Динамика и затраты эксплуатации

Производитель говорит, что по динамическим характеристикам Toyota с водородным двигателем ничем не отличается от своих бензиновых аналогов. Разгон с нуля до «сотни» оценивается в 9 секунд. При этом инженеры отмечают низкую себестоимость поездок.

Цена заправки бака за 1 километр составит всего 10 центов. Таким образом, чтобы проехать машине сотню километров, нужно потратить всего 10 долларов. А заправить авто можно всего за 5 минут.

Как работает двигатель на водороде?

Наверняка каждый из нас задумывался о принципе действия данного агрегата. Что же, давайте рассмотрим, как работает водородный двигатель на самом деле.

Основной движущей силой данных машин является электрохимический генератор (некий У японцев он называется FC Stack. Внутри электрохимического генератора происходит реакция, в результате которой происходит окисление водорода. Именно в этот период вырабатывается нужная энергия, которая потом перенаправляется в компактный аккумулятор. Последний выполняет функцию питания электродвигателя, который и приводит машину в действие. В каком виде вырабатывает отходы водородный двигатель? «Тойота Мирай» не зря называется экологически чистой машиной, так как из ее исходят вовсе не ядовитые газы, а обыкновенная вода.

Все это очень хорошо, однако есть сила, препятствующая развитию данного вида транспорта. Основная проблема заключается в том, что процессы изготовления топлива для водородных авто на данный момент недостаточно развиты и требуют больших денежных затрат. Тем более что при создании водорода задействуются такие компоненты, как уголь и метан. Они очень сильно загрязняют атмосферу, а потому смысла в использовании таких двигателей ради «сохранения окружающей среды» нет. Конечно, отходов от сгорания данного топлива нет (чистая вода), но чтобы его приготовить, нужно значительно испортить атмосферу грязными выбросами. Поэтому все больше специалистов ищут замену теперешним ДВС в солнечных батареях.

Кстати, водород не относится к какому-либо уникальному виду топлива, который может использоваться только на одном типе двигателей. Исследования показали, что этот продукт вполне реально применять и на классических моторах с внутренним сгоранием. Однако после такой реакции есть последствия. Дело в том, что водород при сгорании в ДВС выделяет лишь 1/3 от той энергии, которую он произвел бы на специализированном агрегате. Правда, инженерам удалось исправить этот недостаток. Благодаря измененной системе зажигания КПД таких двигателей не снижается, а, напротив, увеличивается почти в 1,5 раза от обычного, что делает эксплуатацию этого топлива более благоприятной и разумной с экологической и финансовой точки зрения.

Но все же неприятности были подмечены не только в области КПД. И если коэффициент полезного действия инженерам удалось увеличить методом усовершенствования системы зажигания, то с такими проблемами, как высокая температура горения в камере, прогар поршней и клапанов, они справиться не в силах. Кстати, при длительной работе водород способен вступать в реакцию с другими составляющими мотора, в том числе и со смазкой. А без нее двигатель очень быстро изнашивается. Кроме этого, водород в силу своей летучести может проникать в и там воспламеняться. Что касается роторных ДВС, они в силу простой конструкции и большого расстояния между коллекторами являются более благоприятными для использования подобного топлива в качестве основного. На этом вопрос, как работает водородный двигатель, можно считать закрытым.

О стоимости

По словам производителя, старт продаж автомобилей «Тойота Мирай» состоится весной 2015 года. Сначала новинка будет доступна только на внутреннем рынке, а уже летом она появится на европейском и американском рынках. Стартовая цена водородной «Тойоты» составляет 57,5 тысячи долларов. Кроме этого, компания предлагает приобрести данное авто в кредит с ежемесячной оплатой в 500 долларов США. Бонусом станет возможность бесплатной заправки автомобиля в течение года на АЗС Калифорнии.

Пока у японской «Тойоты» нет конкурентов среди водородных автомобилей. По крайнее мерее, так будет до 2016 года. Дело в том, что в марте 2016-го на рынок выходит новый водородный автомобиль Honda FCV. Но насколько популярным она будет, мы прогнозировать не станем, а пока дождемся старта продаж новой «Тойоты Мирай».

Заключение

Итак, мы выяснили, почему он такой особенный и как работает водородный двигатель. «Тойота» - один из первых автопроизводителей, который всерьез задумывается запустить в массовое производство свой «экологически чистый продукт». Правда, пока не будет решена проблема с заправочными станциями и более дешевым способом компанию вряд ли ждет большой успех в сфере продажи подобных машин.

После исчерпывания природных запасов нефти, людям придется полностью положиться на альтернативные виды получения энергии. Водородный двигатель, как замена ДВС, работающих на черном золоте, является одной из перспектив будущих десятилетий.

Силовые установки такого типа имеют больший КПД и меньшую степень токсичности выхлопных газов. Впрочем, главное преимущество моторов, работающих на водороде, – неограниченный запас сырья для производства топлива. Вода, именно она может стать основой топлива будущего.

Интерес к использованию водорода появился еще во время топливного кризиса 70-х годов, но первый водородный двигатель был изобретен только в начале XIX столетия. Действительное применение технология получила во время блокады Ленинграда, когда водородом заправляли лебедки аэростатов, транспорт.

Несмотря на очевидные преимущества, знания способов получения водорода и его использования для работы двигателя внутреннего сгорания, существует несколько значительных «но», замедляющих внедрение этой прогрессивной технологии.

Особенности водорода, как топлива для ДВС

  • после сгорания остается только водяной пар;
  • реакция происходит намного быстрей, чем в случаи с бензином либо дизелем;
  • детонационная устойчивость позволяет повысить степень сжатия;
  • благодаря своей летучести, водород способен проникать в самые малые полости, зазоры между деталями (лишь особые сплавы повышенной прочности способны переносить разрушительное воздействия водорода на структуру металла);
  • теплоотдача сгорания водорода в 2,5 раза больше, чем у бензиновой смеси;
  • широкий диапазон реакции. Минимальная пропорция водорода, достаточная для реакции с кислородом, составляет всего 4%. Такая особенность позволяет настраивать режимы работы двигателя, дозируя консистенцию смеси;
  • хранение водорода осуществляется в сжатом или жидком агрегатном состоянии. При пробое бака, газ под давлением испаряется.

Ввиду перечисленных выше особенностей, использования водорода, как чистого топлива для ДВС, невозможно без внедрения изменений конструкции силового агрегата, а также навесного оборудования.

Устройство и принцип работы

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Гибридные модели и возможные модификации

Благодаря большому интересу к использованию водорода в качестве топлива для ДВС, гидродвигатели внутреннего сгорания имеют различные модификации и типы исполнения.

Схема устройства гибридного водородного двигателя

Мотор, разработанный В.С. Кащеевым, имеет иное устройство. Помимо впускного клапана (6) для подачи воздуха, выпускного для вывода выхлопных газов (7), ГБЦ имеет отдельный клапан для подачи водорода (9) и свечу зажигания (10), которые находятся в предкамере (8). Последняя расположена в ГБЦ выше уровня поршня в положении НМТ.

После преодоления поршнем НМТ в камеру сгорания подается и воспламеняется водород (предварительно поршень затягивает воздух через впускные клапаны). В это же самое время открываются выпускные клапаны. Из-за разницы атмосферного давления, отработанные газы устремляются в выпускной коллектор, создавая за собой вакуум, который перемещает поршень к ВМТ и за счет импульса обратно в крайнее нижнее положение. Как видим, принцип немного отличается, но суть остается неизменной.

Технология гибридных силовых установок – это промежуточная ступень между началом использования водорода в качестве топлива и полным отказом от использования нефтепродуктов. Автомобили с моторами такого типа могут передвигаться как на бензине, так и на водороде.

Еще более широкого распространения получило применение водорода в качестве компонента топливно-воздушной смеси. Для работы ДВС используется обычное топливо и небольшая часть гремучего газа. Это позволяет повысить степень сжатия, и уменьшить токсичность выхлопных газов.

Одним из возможных путей развития двигателей на водороде является применение силовых установок с топливными элементами. Во время химической реакции водорода и кислорода выделяется энергия, которая используется для питания электродвигателей автомобиля.

Трудности эксплуатации водородных ДВС

Главное препятствие на пути внедрения технологии – это стоимость получения водорода (Н2), а также комплектующих для его хранения и транспортировки. К примеру, для сохранения сжиженного состояния нужно поддерживать стабильную температуру -253º С. Наиболее доступный способ получения Н2 – это электролиз воды. Промышленное снабжение водородом требует больших энергетических затрат. Рентабельным этот процесс сможет сделать ядерная энергетика, которой также пытаются найти рациональную альтернативу. Транспортировка и хранение газа требуют использования дорогостоящих материалов и высококачественных механизмов. К другим недостаткам водородного топлива можно отнести:

  • взрывоопасность. В замкнутом пространстве достаточная для реакции концентрация гремучего газа может спровоцировать взрыв. Усугубить ситуацию способна высокая температура воздуха. Из-за высокой степени диффузности водорода существует риск попадания Н2 в выхлопной коллектор, где реакция с горячими выхлопными газами приведет к возгоранию смеси. Роторный двигатель, ввиду особенностей компоновки, является более предпочтительным для водородного автомобиля;
  • для хранения водорода требуется емкость большого объема, а также специальные системы, препятствующие улетучиванию Н2 и обеспечивающие защиту от механических деформаций. Если для автобусов, грузовиков либо водного транспорта такая особенность не играет большой роли, то легковые автомобили теряют ценные кубометры багажного отделения;
  • в режимах высокотемпературных нагрузок водород способен провоцировать разрушительное воздействие на детали цилиндропоршневой группы и моторное масло. Применение соответствующих сплавов и смазочных материалов ведет к удорожанию производства и эксплуатации двигателей, работающих на водороде.

Перспективы развития

Автомобилестроение – далеко не единственная область, где могут применяться водородные двигатели. Водный, железнодорожный транспорт, авиация, а также различная вспомогательная спецтехника могут использовать силовые установки подобного типа.

Интерес к внедрению технологии водородных двигателей проявляют как дочерние предприятия, так и крупные автоконцерны (BMW, Volskwagen, Toyota, GM, Daimler AG и прочие). Уже сейчас на дорогах можно встретить не только опытные образцы, но и полноценные представители модельного ряда, приводимые в движение с помощью водорода. BMW 750i Hydrogen, Honda FSX, Toyota Mirai и многие другие модели отлично зарекомендовали себя во время дорожных испытаний. К сожалению, высокая стоимость водорода, отсутствие инфраструктуры заправочных станций, а также достаточного количества квалифицированных сотрудников, оборудования для ремонта и обслуживания не позволяют запустить такие автомобили в массовое производство. Оптимизация всего цикла использования гремучего газа являются первоначальной задачей области развития водородной энергетики.