Алкины форма молекулы в пространстве. Химические свойства алкинов

Свойства алкинов – физические и химические похожи на свойства алкенов и алкадиенов. Однако кислотные свойства алкинов создают ряд отличительных химических свойств.

Физические свойства алкинов

Алкины, за исключением ацетилена, не имеют цвета и запаха. При нормальных условиях первые 4 члена ряда являются газами, с 5 по 15 – жидкостями, более 15 – твердыми веществами.

Растворимость алкинов

Алкины являются относительно полярными молекулами, поэтому хорошо растворимы в полярных растворителях или растворителях с низкой полярностью. В воде алкины растворяются незначительно, но лучше, чем и .

Точки плавления и кипения алкинов

Как правило, алкины плавятся и кипят при более высоких температурах, по сравнению соответствующих алканов и алкенов. Температуры плавления и кипения алкинов, увеличиваются пропорционально их молекулярной массе.

В таблице приведены физические постоянные некоторых алкинов:

Химические свойства алкинов

В общем алкины более реакционноспособны, чем алканы и алкены. Большинство реакций, в которых они участвуют являются реакциями . Однако терминальные алкины (тройная связь находится в конце цепи) также подвергаются и реакциям замещения. Атомы водорода при атоме углерода способны подвергаться протонизации, вследствие чего алкины имеют относительно кислую природу.

Реакции электрофильного присоединения (реакции тройной углерод-углеродной связи)

1) Гидрирование алкинов. В присутствии активных катализаторов (никель, платина) восстанавление алкинов водородом происходит сразу до алканов. При использовании менее активных катализаторов (Pd, железо Ренея) реакция протекает через стадию образования алкена:

При гидрировании гомологов ацетилена на первой стадии получаются цис- олефины.

2) Галогенирование алкинов протекает в две легко разделимые стадии, из которых первая стадия протекает более энергично. При недостатке галогена реакция идет в одну стадию, при избытке – две стадии:

3) Гидрогалогенирование алкинов также протекает в две разделимые стадии. При гидрохлорировании ацетилена на первоначальном этапе образуется важный в промышленности продукт – хлористый винил, далее происходит образование 1,1-дихлорэтан:

Присоединение молекулы HCl к хлористому винилу происходит по . Аналогичным образом присоединяется молекула HBr.

4) Гидратация алкинов происходит согласно правилу Марковникова с участием Hg 2+ в качестве катализатора (реакция Кучерова ). В ходе такой реакции, из ацетилена образуется ацетальдегид, а из его гомологов — кетоны:
5) Присоединение спиртов и меркаптанов . При воздействии едкого кали ацетилен и монозамещенные ацетилены под давлением присоединяют спирты, образуя акрилвиниловые эфиры (Реппе, Фаворский А.Е., М.Ф. Шоствковский): Подобным образом происходит присоединение меркаптанов.

6) Присоединение кислот.

Присоединение уксусной кислоты к ацетилену происходит в условиях гетерогенного катализа (H 3 PO 4 или B 2 O 3) с образованием винилацетата:

Винилацетат хорошо полимеризуется с образованием поливинилацетата (ПВА):

Присоединение синильной кислоты к ацетилену происходит с образованием акрилонитрила:

Акрилонитрил используют для получения полиакрилонитрила:
7) Присоединение хлоридов некоторых металлов к ацетилену:

8) Реакции полимеризации

Димеризация ацетилена происходит в присутствии солей Cu (I) с образованием винилацетилена. Дальнейшее его взаимодействие с соляной кислотой приводит к образованию хлоропрена, который используют при получении :

А.Д. Петров путем кросс-димеризации ацетилена получил изобутилен. В качестве катализаторов выступает никель в присутствии хлорида цинка:

Тримеризация ацетилена в присутствии активного угля и при температуре около 600°С ведет к образованию такого важного продукта, как бензол (реакция Зелинского ):

Ученый Шеффер в 1966 г обнаружил, что при пропускании над хлоридом алюминия раствора диметилацетилена в бензоле, последний тримеризуется. Продуктом реакции является гексаметилбициклогексадиен (гексаметилдьюаровский бензол), который далее при при воздействии температуры подвергается изомеризации в гексаметилбензолПри использовании в качестве катализатора димезитиленкобальта гексаметилбензол получается непосредственно из диметилацетилена:

Тетрамеризация ацетилена под действием никеля ведет к образованию циклоокта-1,3,5,7-тетраена (синтез Реппе ):

10) Окисление алкинов концентрированным раствором перманганата калия (KMnO 4) в кислой среде протекает с образованием карбоновых кислот. Розовый раствор KMnO 4 в ходе реакции обесцвечивается:

Окисление алкинов в мягких условиях , т.е. разбавленный раствор KMnO 4 , комнатная температура, происходит без разрыва связей. При окислении ацетилена продуктом реакции является щавелевая кислота, при окислении его гомологов в нейтральной среде реакцию можно остановить на стадии образования дикетонов:

При горении алкинов происходит их полное окисление до углекислого газа и воды. Реакция экзотермическая и протекает с выделением 1300 кДж/моль тепла:

Реакции замещения водородных атомов ацетилена

1) Взаимодействие с солями тяжелых металлов (качественная реакция). При взаимодействии ацетилена и монозамещенных гомологов с аммиачными растворами окиси серебра или полухлористой меди обрадуются нерастворимые осадки ацетиленидов:

Ацетилинид серебра Ag-C≡C-Ag – бесцветный и R-C≡C-Ag — белый

Ацетилинид меди Cu-C≡C-Cu – вишнево-бурый и R-C≡C-Cu – желто-бурый

Ацетилениды – взрывчатые вещества. Под действием кислот разлагаются с образованием ацетилена и соответствующих солей металлов.

2) Взаимодействие ацетилена и его гомологов с щелочными и щелочноземельными металлами в жидком аммиаке также приводит к образованию ацетилинидов:

Действие производных Na и Mg, известных как реактив Иоцича, подобно реактиву Греньяра, поэтому широко используются в органическом синтезе.

3) Взаимодействие ацетилена и его гомологов с кетонами в присутствии едкого кали, под небольшим давлением (А.Е. Фаворский):
4) Взаимодействие ацетилена и его гомологов с альдегидами в присутствии ацетилинида меди (Реппе): 5) Ацетилен-аллен-диеновая перегруппировка Фаворского происходит при нагревании ацетиленов с металлическим натрием. При этом расположенная «внутри» соединения тройная связь перемещается в конец. А при нагревании ацетиленов с расположенной в конце тройной связью со спиртовым раствором щелочи происходит перемещение тройной связи к центру молекулы:

Категории ,

Физические свойства алкинов похожи на свойства алканов и алкенов. При обычных условиях (С 2 – С 4) - газы, (C 5 – C 16) - жидкости, начиная с C 17 - твердые вещества. Температуры ки­пения алкинов выше, чем у соответствующих алкенов. Так, эти­лен имеет t кип = -103 °С, ацетилен кипит при -83,6 °С; пропен и пропин соответственно при -47 °С и -23 °С.

Растворимость низших алкинов в воде несколько выше, чем алкенов и алканов, однако она все же очень мала. Алкины хорошо растворимы в неполярных органических растворителях.

Получение . 1 . Общий способ получения алкинов - отщепление двух мо­лекул галогеноводорода от дигалогеналканов, которые содержат два атома галогена либо у соседних, либо у одного атома углерода, под действием спиртового раствора щелочи.

С 2 Н 5 ОН
СН 2 Вr — СН 2 Вr + 2КОН НС ≡ СН + 2КВr + 2Н 2 О,

или его ближайших гомологов - этана и пропана, причем в этом случае ацетилен образуется при более низких температурах:

Сырьем в этих способах служит природный газ или нефть.

В лабораторных условиях ацетилен получают гидролизом карбида кальция:

СаС 2 + 2Н 2 О = Са(ОН) 2 + С 2 Н 2

Химические свойства алкинов обусловлены наличием в их молекулах тройной связи. Типичными реакциями для ацетилена и его гомологов являются реакции электрофильного присоединения А E . Отличие алкинов от алкенов заключается в том, что реакции присоединения могут протекать в две стадии. На первой стадии идет присоединение к тройной связи с образованием двойной связи, а на второй стадии - присоединение к двойной связи. Ре­акции присоединения для алкинов протекают медленнее, чем для алкенов. Это объясняется тем, что p -электронная плотность тройной связи расположена более компактно, чем в алкенах, и поэтому менее доступна для взаимодействия с различными реагентами.

1 . Галогенирование. Галогены присоединяются к алкинам в две стадии. Например, присоединение брома к ацетилену приводит к образованию дибромэтена , который, в свою очередь, реагирует с избытком брома с образованием тетрабромэтана :

В случае избытка галогеноводорода происходит полное гидрогалогенирование, причем для несимметричных алкинов на каждой стадии присоединение идет по правилу Марковникова, например:

На первой стадии реакции образуется непредельный спирт, в котором гидроксильная группа находится непосредственно у атома углерода при двойной связи. Такие спирты принято называть виниловыми или енолами .

Отличительной чертой енолов является их неустойчивость. В момент образования они изомеризуются в более стабильные карбонильные соединения (альдегиды или кетоны) за счет переноса протона от гидроксильной группы к соседнему атому углерода при двойной связи. При этом p -связь между атомами углерода разрывается, и образуется p -связь между атомом углерода и атомом кислорода. Причиной изомеризации является большая прочность двойной связи С = О по сравнению с двойной связью С = С.

В результате реакции гидратации только ацетилен превращается в альдегид; гидратация гомологов ацетилена протекает по правилу Марковникова;, и образующиеся енолы изомеризуются в кетоны. Так, например, пропин превращается в ацетон :

Hg 2+
СН 3 – СН ≡ СН + Н 2 О [СН 3 — С(ОН) = СН 2 ] → СН 3 – СО — СН 3 .

Реакция гидратации алкинов была открыта М.Г. Кучеровым (1881 г.) и носит название реакции Кучерова .

4 . Кислотные свойства. Особенностью алкинов, имеющих концевую тройную связь, является их способность отщеплять протон под действием сильных оснований, т.е. проявлять слабые кислотные свойства. Возможность отщепления протона обусловлена сильной поляризацией s -связи: ≡ С← Н. Причиной поляризации является высокая электроотрицательность атома углерода в sp -гибридном состоянии. Поэтому алкины, в отличие от алкенов и алканов, способны образовывать соли, называемые ацетиленидами :

R — C ≡ C —H + NaH → R —C ≡ C — Na + Н 2

Ацетилениды серебра и меди (I ) легко образуются и выпадают в осадок при пропускании ацетилена через аммиачный раствор оксида серебра или хлорида меди (I ). Эти реакции служат для обнаружения алкинов с тройной связью на конце цепи.

R-C ≡ CH + Cl → R —C ≡ C — Cu + NH 4 Cl + NH 3 .
красный осадок

Ацетилениды серебра и меди как соли очень слабых кислот легко разлагаются при действии хлороводородной кислоты с выделением исходного алкина:

R-C = C-Cu + HCl → R-C = CH + CuCl.

Таким образом, используя реакции образования и разложения ацетиленидов, можно выделять алкины из смесей с другими углеводородами.

5 . Полимеризация. В присутствии катализаторов алкины могут реагировать друг с другом, причем в зависимости от условий образуются различные продукты. Так, под действием водного раствора CuCl и NH 4 Cl ацетилен димеризуется, давая винилацетилен :

НС = СН + НОСH → СН 2 = СН-ОСН.

Винилацетилен обладает большой реакционной способностью; присоединяя хлороводород, он образует хлоропрен, используемый для получения искусственного каучука:

СН 2 = СН-С = СН + HCl → СН 2 = СН – ССl = СН 2 .

При пропускании ацетилена над активированным углем при 600 °С происходит тримеризация ацетилена с образованием бензола:

В аналогичные реакции тримеризации могут вступать также и ближайшие гомологи ацетилена, например:

6 . Реакции окисления и восстановления. Алкины легко окисляются различными окислителями, в частности перманганатом калия. При этом раствор перманганата калия обесцвечивается, что служит указанием на наличие тройной связи. При окислении обычно происходит расщепление тройной связи, и образуются карбоновые кислоты :

R — C ≡ C —R ‘ + 3[О] + Н 2 О → R — COOH + R ‘ — COOH .

В присутствии металлических катализаторов алкины восстанавливаются путем последовательного присоединения молекул водорода, превращаясь сначала в алкены, а затем в алканы:

Н 2 Н 2
СН 3 - С ≡ СН СН 3 - СН - СН 2 СН 3 - СН 2 - СН 3 .

Применение . На основе ацетилена развились многие отрасли промышленности органического синтеза. Выше уже отмечена возможность получения уксусного альдегида из ацетилена и различных кетонов из гомологов ацетилена по реакции Кучерова. в свою очередь, большой интерес представляют реакции алкинов с кетонами. Например, реакцией ацетилена с ацетоном можно получить изопрен - исходный продукт для получения синтетического каучука. Хлоропрен также получают из винилаиетилена. Ацетилен используется для сварки (кислородноацетиленовая сварка) металлов, поскольку при его горении развивается высокая температура.

Алкины. Ацетиленовые углеводороды.

Алкины – это углеводороды, в молекулах которых присутствуют атомы углерода, затрачивающие на соединение с соседним атомом углерода три валентности, т. е. образующие тройную связь.

Общая формула алкинов – CnH 2 n -2 .

Атомы углерода с тройной связью находятся в состоянии sp-гибридизации.

Названия строятся аналогично алкенам, с заменой окончания –ен на –ин .

Родоначальник рода – ацетилен СНºСН.

Изомерия алкинов.

Несмотря на наличие в алкинах кратной связи, для них характерны не все типы изомерии, используемые в алкенах. Так для ацетиленовых углеводородов не используется цис-транс-изомерия, что связано именно с наличием в их структуре тройной связи.

Начинается структурная изомерия с бутина. Однако отличаются изомеры С4Н6 только положением тройной связи.

СН3 - СН2 - СºСН СН3 - С º С - СН3

бутин-1 бутин-2

изомерия углеродного скелета , аналогично изомерии алканов и алкенов.

В структурной изомерии алкинов не употребляются приставки сим - и несим-, т. к. у тройной связи не может быть два заместителя.

СН3 - СН2 - СН2 - СºСН ® DIV_ADBLOCK339">


диметилацетилен

изопропилацетилен

Номенклатура ИЮПАК:

1) за главную цепь принимают самую длинную цепь, включающую тройную связь.

2) нумерацию цепи начинают с того конца, где ближе тройная связь

3) названия алкинов строятся от названий аналогичных алканов с заменой окончания –ан на –ин, цифрой показывают положение кратной связи

4) количество и положение заместителей показывается приставками и цифрами аналогично алканам и алкенам.

Например:

3-метилбутин-1

Строение алкинов.

Рассмотрим строение алкинов на примере ацетилена. В случае алкинов в гибридизации участвуют 1s - и 1р-облако.

https://pandia.ru/text/78/387/images/image007_25.gif" width="214" height="159 src=">

Два р-облака остается негибридизованными они перекрываются в двух взаимно перпендикулярных плоскостях.

ПРОСТРАНСТВЕННОЕ СТРОЕНИЕ АЦЕТИЛЕНА

Таким образом, молекула ацетилена имеет линейное строение, атомы углерода соединены одной s - и двумя p-связями.

Физические свойства.

Ацетилен – бесцветный газ, малорастворимый в воде. Образует взрывчатые смеси с кислородом.

Способы получения алкинов:

1. Карбидный метод. Промышленный и лабораторный способ получения ацетилена. Воздействие на карбид кальция водой.

CaC2 + H2O = HCºCH + Ca(OH)2

2. Дегидрирование – пиролиз предельных углеводородов.

Лабораторные способы

3. Действие спиртового раствора щелочи на вицинальные и геминальные дигалогенпроизводные предельных углеводородов.

Если атомы галогенов находятся у рядом стоящих атомов углерода – такие галогенпроизводные углеводородов называют вицинальными.

Если атомы галогенов находятся у одного атома углерода – такие галогенпроизводные углеводородов называют геминальными.

4. Алкилирование ацетилена. Этим способом получают производные ацетилена.

Первый способ осуществляется с использованием амида натрия, происходит образование ацетиленида натрия и его последующее взаимодействием с галогенпроизводными алканов.

Во втором случае используется реактив Гриньяра для получения промежуточного продукта (реактив Иоцича), который затем также взаимодействует с алкилгалогенидами.

Химические свойства алкинов.

Химические свойства алкинов обусловлены их строением. Наиболее активны они в реакциях с нуклеофильными реагентами. Доля s-орбитали составляет 50%, а чем больше доля s-орбитали, тем ближе электроны к ядру, а следовательно, тем труднее электроны вовлекаются в реакцию электрофильного присоединения. С другой стороны, ядра углерода в ацетилене более доступны, благодаря его линейному строению.

Этими же особенностями ацетиленовой группировки объясняется и подвижность атомов водорода , так называемая С-Н-кислотность ацетилена. причиной кислотных свойств ацетилена является сильная поляризация связи С-Н.

Реакции присоединения:

Электрофильное присоединение AdE

1. Гидрирование ацетиленовых углеводородов происходит в присутствии катализаторов гидрирования: платины, палладия (при 250С), никеля (при нагревании).

2. Галогенирование протекает аналогично гидрированию, т. е. присоединение происходит по кратной связи.

транс-алкен 1,2-дихлорэтен 1,1,2,2-тетрахлорэтан


3. Гидрогалогенирование, т. е. присоединение галогеноводородов происходит в присутствии катализатора, которым являются хлориды меди и ртути. Реакция протекает по правилу Марковникова, аналогично алкенам.

хлористый винил 1,1,-дихлорэтан

Нуклеофильное присоединение AdN

4. Гидратация – реакция присоединения воды. Протекает в присутствии катализатора (соли ртути) в кислой среде. Эта реакция также носит название – реакции Кучерова.

Ацетилен в такой реакции присоединяя воду, образует неустойчивый виниловый спирт, который затем превращается в уксусный альдегид.

Другие алкины обращаются в кетоны.

Гидратация используется в промышленном синтезе уксусного альдегида из ацетилена.

Возможный механизм реакции Кучерова:

https://pandia.ru/text/78/387/images/image020_5.gif" width="343" height="28">

Алкадиены. Диеновые углеводороды.

Алкадиены – это углеводороды, содержащие в углеродной цепи две двойные связи.

Состав алкадиенов выражается общей формулой С n Н2 n -2 . Они изомерны ацетиленовым углевордородам.

В зависимости от расположения двойных связей алкадиены можно разделить на три основные типа:

Ø Алленовые – содержат кумулированные связи, т. к. двойные связи расположены у одного атома углерода.

Например: Н2С=С=СН2 аллен

Ø Алкадиены с сопряженными (конъюгированными) связями. В этом случае двойные связи располагаются через одинарную

Ø Например: Н2С=СН – СН=СН2 дивинил

Ø Диены с изолированными связями

Например: Н2С=СН – СН2 – СН2 – СН=СН2 диаллил

Номенклатура

Для алкадиенов используется номенклатура ИЮПАК. Названия которые приведены в классификации диенов, даны по тривиальной номенклатуре.

По номенклатуре ИЮПАК название диеновых углеводородов производится от предельных углеводородов заменой окончании –ан на –диен. Между корнем и окончанием ставится соединительная буква а .

Цифрами указывают места расположения двойных связей, цифрами и приставками, аналогично другим углеводородам указывают положение и число заместителей, которые располагают в алфавитном порядке.

Например:

Н2С=С=СН2 - пропадиен-1.2

Н2С=СН – СН=СН2 – бутадиен-1,3

Н2С=СН – СН2 – СН2 – СН=СН2 – гексадиен-1,5

6-метил-5-этил-нонадиен-1,3

Наибольшего внимания заслуживают углеводороды с сопряженными связями, так называемые – 1,3-алкадиены.

1,3-Алкадиены

Физические свойства.

Физические свойства диенов подобны свойствам других алифатических углеводородов. Низшие диены С3-С4- газы, не имеющие не цвета, ни запаха. Средние диены представляют собой бесцветные жидкости, не смешивающиеся с водой.

Способы получения

Многие диены можно получить способами аналогичными, получению алкенов, например, дегидрирование алканов и алкенов, дегидратация алкандиолов (двухатомных спиртов), дегидрогалогенирование дигалогеналканов и др.

Химические свойства.

Диеновые углеводороды способны присоединять различные вещества не только по одной из двойных связей(1,2-положение), но и по крайним атомам сопряженной системы (в 1,4-положение) с перемещением двойной связи.

1. гидрирование диенов осуществлется каталитически возбужденным водородом. Присоединение происходит и в 1,2- и в 1,4- положение.

https://pandia.ru/text/78/387/images/image023_3.gif" width="614" height="130 src=">

Количество 1,4-продукта зависит от природы галогена и условий проведения реакции. Выход продукта 1,4-присоединения увеличивается с возрастанием температуры и при переходе от хлора через бром к иоду.

3. присоединение галогеноводородов также протекает по типу 1,2- и 1.4-положениям, причем 1,4-продукта образуется больше.

https://pandia.ru/text/78/387/images/image026_5.gif" width="623" height="94">

Реакция полимеризации

Алкадиенам применимы те же основные принципы полимеризации, что и к алкенам, но особенность их реакций состоит в том, что полимерная цепь может расти путем либо, 1,2- либо 1,4-присоединения мономера к мономеру.

Алкины - это ненасыщенные алифатические углеводороды, имеющие одну или несколько тройных углерод-углеродных связей. Тройные связи имеют линейную структуру (см. разд. 2.1). Алкины с одной тройной связью образуют гомологический ряд, имеющий общую формулу Простейшим членом этого ряда является этин (ацетилен). Он имеет формулу

Систематические названия алкинов образуются подобно названиям соответствующих алканов, с той разницей, что суффикс заменяется на суффикс Например

Температуры плавления и кипения алкинов приблизительно такие же, как и у соответствующих алканов и алкенов. Они увеличиваются при возрастании числа атомов углерода в углеродной цепи алкина. При комнатной температуре и нормальном давлении этин (ацетилен), пропин и бут-1-ин находятся в газообразном состоянии. Бут-2-ин имеет температуру кипения 27 °С. Высшие алкины в нормальных условиях представляют собой жидкости. Подобно алкенам и алканам, алкины нерастворимы в воде, но растворимы в неполярных органических растворителях.

Лабораторные методы получения

Ацетилен получают, гидролизуя дикарбид (ацетилид) кальция холодной водой:

Высшие алкины получают дегидрогалогенированием дигалогеноалканов. Эта реакция протекает с отщеплением двух молекул соответствующих галогеноводородов. Для ее проведения дигалогеноалканы подвергают кипячению с обратным холодильником в этанольном растворе гидроксида калия. Например

Высшие алкины можно также получать по реакции дикарбида (ацетилида) натрия с первичными алкилгалогенидами. Например

Эта реакция представляет собой пример нуклеофильного замещения, а нуклеофилом в ней является ацетилидный карбанион (дикарбид-ион):

Реакции алкинов

Во многих реакциях алкины обладают намного большей реакционной способностью, чем соответствующие алкены. Благодаря наличию -электронов в тройных связях алкины могут вступать в реакции электрофильного присоединения. В реакциях с участием несимметричных алкинов и несимметричных реагентов выполняется правило Марковникова. Однако в реакциях присоединения, катализируемых пероксидами, происходит образование антимарковниковского продукта, так как они протекают по радикальному механизму. Алкины могут также вступать в реакции двойного присоединения. При этих реакциях происходит присоединение двух молекул по тройной связи:

Кроме того, алкины вступают в реакции гемолитического расщепления с электрофильными реагентами, например с хлором.

Реакции с галогенами

В присутствии катализатора, например хлорида алюминия или хлорида железа(III), ацетилен вступает в реакцию электрофильного присоединения с хлором или бромом:

В отсутствие катализатора реакция ацетилена с хлором протекает со взрывом, с образованием красного пламени и облаков черной сажи:

Эту реакцию можно наглядно продемонстрировать, заставляя ацетилен и хлор реагировать в момент выделения последнего

С этой целью добавляют смесь дикарбида кальция и перманганата калия к 50%-ному раствору соляной кислоты.

При встряхивании какого-либо алкина с раствором брома в тетрахлорометане происходит, как и в случае алкенов, обесцвечивание раствора:

В происходящей при этом реакции присоединения образуется промежуточное соединение дигалогеноалкен, который можно выделить из реакционной смеси.

Присоединение галогеноводородов

Алкины вступают в реакции электрофильного присоединения с галогеноводородами, однако эти реакции протекают медленнее, чем у соответствующих алкенов:

Следует обратить внимание на то, что присоединение второй молекулы происходит в соответствии с правилом Марковникова. Эта реакция катализируется ионами ртути (II). Образующийся в ней промежуточный продукт, хлороэтилен (винилхлорид), можно выделить из реакционной смеси и подвергнуть полимеризации (см. разд. 18.3).

Реакции алкинов с бромоводородом протекают быстрее, чем с хлороводородом, но медленнее, чем с иодоводородом.

Присоединение водорода

Ацетилен восстанавливается водородом при комнатной температуре в присутствии некоторых металлических катализаторов, например платины или палладия. Вместо них может использоваться никелевый катализатор, однако в этом случае реакция протекает при температуре 150°С:

При использовании модифицированных катализаторов такие реакции алкинов могут приостанавливаться на стадии образования алкенов.

Присоединение воды

При пропускании газообразного ацетилена через раствор серной кислоты и сульфата при температуре около 60 °С происходит образование этаналя

Реакции с металлами и ионами металлов

Атом водорода, связанный с алкинильным атомом углерода, обнаруживает свойства слабой кислоты. Например, натрий может замещать один из атомов водорода в ацетилене, в результате чего образуется дикарбид (ацетилид) натрия:

Эта реакция принадлежит к типу реакций замещения. Она проводится в жидком аммиаке.

Замещение происходит также при пропускании газообразного ацетилена через водно-аммиачные растворы хлорида или нитрата серебра при комнатной температуре. В растворе хлорида образуется красный осадок дикарбида

В растворе нитрата серебра образуется белый осадок ацетилида серебра

Горение

Алкины относятся к эндотермическим соединениям (см. гл. 5). Это означает, что они характеризуются положительными значениями энтальпии образования. Например,

Поэтому горение ацетилена в кислороде протекает как сильно экзотермическая реакция:

Высокая температура, развивающаяся в ходе этой реакции, позволяет использовать ее на практике для кислородно-ацетиленовой сварки.

Сгорание ацетилена на воздухе оказывается неполным. Поскольку ацетилен имеет высокое относительное содержание углерода, он горит очень ярким пламенем из-за образования углеродных частиц.

Полимеризация

При пропускании ацетилена через медную трубку, нагретую до температуры около 300 °С, он полимеризуется с образованием бензола:

В этой реакции медь играет роль катализатора.

Итак, повторим еще раз!

1. Для определения молекулярных формул газообразных углеводородов используется эвдиометрыя. Эта методика основана на измерении объема углеводорода, сжигаемого в избытке кислорода.

2. Температуры плаиления и кипения алифатических углеводородов тем выше, чем больше число входящих в них атомов углерода, а летучесть этих соединений, наоборот, уменьшается с ростом числа атомов углерода.

3. Этилен (этен) получают в лабораторных условиях из этанола или бромоэтана.

4. Ацетилен (этин) получают в лабораторных условиях из дикарбида (ацетилида) кальция.

5. Все алифатические углеводороды сгорают в избытке кислорода с образованием диоксида углерода и воды.

6. Ненасыщенные алифатические углеводороды окисляются под действием подкисленного раствора перманганата калия.

7. Ненасыщенные углеводороды вступают в реакции присоединения с водородом, галогенами и галогеноводородами.

8. При электрофильном присоединении по двойной связи более электроотрицательный атом или группа атомов присоединяются к тому атому углерода, который связан с наименьшим числом атомов водорода. Эта закономерность представляет собой один из вариантов правила Марковникова.

9. Алкены и алкины могут вступать в реакции а) гидратации и б) полимеризации.

10. Алканы вступают в реакции замещения с хлором. Эти реакции протекают по цепному механизму и включают гомолитическое расщепление ковалентных связей. Такие цепные реакции осуществляются в три стадии:

а) стадия инициирования (зарождения цепи);

б) стадия развития цепи;

в) стадия обрыва цепи.

11. Термический крекинг алканов тоже протекает по цепному механизму и включает гомолитическое расщепление ковалентных связей.

12. Каталитический крекинг алканов имеет ионный механизм.

13. Алкены обладают способностью вступать в реакции озонолиза, в результате чего образуются неустойчивые озониды алкенов (оксираны).

14. Алкины вступают в реакции с металлами и, таким образом, обладают кислотными свойствами.


Плавятся и кипят алкины при более высокой температуре, чем алканы и алкены.

Растворимость в воде незначительная, но немного выше, чем у алкенов и алканов.

Растворимость в высокая.

Наиболее широко используемый алкин - ацетилен - обладает такими физическими свойствами:

  • не имеет цвета;
  • не имеет запаха;
  • при нормальных условиях находится в газообразном агрегатном состоянии;
  • обладает меньшей плотностью, чем воздух;
  • температура кипения - минус 83,6 градусов Цельсия;

Химические свойства алкинов

В этих веществах атомы связаны тройной связью, чем и объясняются основные их свойства. Алкины вступают в реакции такого типа:

  • гидрирование;
  • гидрогалогенирование;
  • галогенирование;
  • гидратация;
  • горение.

Давайте рассмотрим их по порядку.

Гидрирование

Химические свойства алкинов позволяют им вступать в реакции такого типа. Это вид химического взаимодействия, при котором молекула вещества присоединяет к себе дополнительные атомы водорода. Вот пример такой химической реакции в случае с пропином:

2Н 2 + C 3 H 4 = С 3 Н 8

Эта реакция происходит в две стадии. На первой молекула пропина присоединяет два атома гидрогена и на второй - столько же.

Галогенирование

Это еще одна реакция, которая входит в химические свойства алкинов. В ее результате молекула ацетиленового углеводорода присоединяет атомы галогенов. К последним относятся такие элементы, как хлор, бром, иод и др.

Вот пример такой реакции в случае с этином:

С 2 Н 2 + 2СІ 2 = С 2 Н 2 СІ 4

Такой же процесс возможен и с другими ацетиленовыми углеводородами.

Гидрогалогенирование

Это также одна из основных реакций, которая входит в химические свойства алкинов. Она заключается в том, что вещество взаимодействует с такими соединениями, как НСІ, НІ, HBr и др. Это химическое взаимодействие происходит в две стадии. Давайте рассмотрим реакцию такого типа на примере с этином:

С 2 Н 2 + НСІ = С 2 Н 3 СІ

С 2 Н 2 СІ + НСІ = С 2 Н 4 СІ 2

Гидратация

Это химическая реакция, которая заключается во взаимодействии с водой. Она тоже происходит в два этапа. Давайте рассмотрим ее на примере с этином:

H 2 O + С 2 Н 2 = С 2 Н 3 ОН

Вещество, которое образуется после первого этапа реакции, называется виниловым спиртом.

В связи с тем, что согласно правилу Эльтекова функциональная группа ОН не может располагаться рядом с двойной связью, происходит перегруппировка атомов, в результате которой из винилового спирта образуется ацетальдегид.

Процесс гидратации алкинов еще называется реакцией Кучерова.

Горение

Это процесс взаимодействия алкинов с кислородом при высокой температуре. Рассмотрим горение веществ этой группы на примере с ацетиленом:

2С 2 Н 2 +2О 2 = 2Н 2 О + 3С + СО 2

При избытке кислорода ацетилен и другие алкины горят без образования карбона. При этом выделяются только оксид карбона и вода. Вот уравнение такой реакции на примере с пропином:

4О 2 + С 3 Н 4 = 2Н 2 О + 3СО 2

Горение других ацетиленовых углеводородов также происходит подобным образом. В результате выделяется вода и углекислый газ.

Другие реакции

Также ацетилены способны реагировать с солями таких металлов, как серебро, медь, кальций. При этом происходит замещение гидрогена атомами металла. Рассмотрим такой вид реакции на примере с ацетиленом и нитратом серебра:

С 2 Н 2 + 2AgNO3 = Ag 2 C 2 + 2NH 4 NO 3 + 2Н 2 О

Еще один интересный процесс с участием алкинов - реакция Зелинского. Это образование бензола из ацетилена при его нагревании до 600 градусов по Цельсию в присутствии активированного угля. Уравнение этой реакции можно выразить таким образом:

3С 2 Н 2 = С 6 Н 6

Также возможна полимеризация алкинов - процесс объединения нескольких молекул вещества в одну полимерную.

Получение

Алкины, реакции с которыми мы рассмотрели выше, получают в лаборатории несколькими методами.

Первый - это дегидрогалогенирование. Выглядит уравнение реакции таким образом:

C 2 H 4 Br 2 + 2КОН = С 2 Н 2 + 2Н 2 О + 2KBr

Для проведения такого процесса необходимо нагреть реагенты, а также добавить этанол в качестве катализатора.

Также есть возможность получения алкинов из неорганических соединений. Вот пример:

СаС 2 + Н 2 О = С 2 Н 2 + 2Са(ОН) 2

Следующий метод получения алкинов - дегидрирование. Вот пример такой реакции:

2СН 4 = 3Н 2 + С 2 Н 2

С помощью реакции подобного типа можно получить не только этин, но и другие ацетиленовые углеводороды.

Применение алкинов

Наибольшее распространение в промышленности получил самый простой алкин - этин. Он широко используется в химической отрасли.

  • Нужен ацетилен и другие алкины для получения из них других таких как кетоны, альдегиды, растворители и др.
  • Также из алкинов можно получить вещества, которые используются при производстве каучуков, поливинилхлорида и др.
  • Из пропина можно получить ацетон в результате ракции Кучерова.
  • Кроме того, ацетилен используется при получении таких химических веществ, как уксусная кислота, ароматические углеводороды, этиловый спирт.
  • Еще ацетилен применяется в качестве топлива с очень высокой теплотой горения.
  • Также реакция горения этина используется для сваривания металлов.
  • Кроме того, с можно получить технический карбон.
  • Также это вещество применяется в автономных светильниках.
  • Ацетилен и ряд других углеводородов этой группы используются в качестве благодаря своей высокой теплоте горения.

На этом применение алкинов заканчивается.

Заключение

В качестве завершающей части приводим краткую таблицу о свойствах ацетиленовых углеводородов и их получении.

Химические свойства алкинов: таблица
Название реакции Пояснения Пример уравнения
Галогенирование Реакция присоединения молекулой ацетиленового углеводорода атомов галогенов (брома, иода, хлора и др.) C 4 H 6 + 2I 2 = С 4 Н 6 І 2
Гидрирование Реакция присоединения молекулой алкина атомов водорода. Происходит в две стадии.

C 3 H 4 + Н 2 = С 3 Н 6

C 3 H 6 + Н 2 = С 3 Н 8

Гидрогалогенирование Реакция присоединения молекулой ацетиленового углеводорода гидрогалогенов (НІ, НСІ, HBr). Происходит в две стадии.

C 2 H 2 + НІ = С 2 Н 3 І

С 2 Н 3 І + НІ = C 2 H 4 I 2

Гидратация Реакция, в основе которой лежит взаимодействие с водой. Происходит в две стадии.

С 2 Н 2 + H 2 O = С 2 Н 3 ОН

C 2 H 3 OH = СН 3 -СНО

Полное окисление (горение) Взаимодействие ацетиленовго углеводорода с кислородом при повышенной температуре. В результате образуется оксид карбона и вода.

2C 2 H 5 + 5О 2 = 2Н 2 О + 4CO 2

2С 2 Н 2 + 2О 2 = Н 2 О + CO 2 + 3С

Реакции с солями металлов Заключаются в том, что атомы металлов замещают атомы гидрогена в молекулах ацетиленовых углеводородов.

С 2 Н 2 + AgNO3 = C 2 Ag 2 + 2NH 4 NO 3 + 2Н 2 О

Получить алкины можно в лабораторных условиях тремя методами:

  • из неорганических соединений;
  • путем дегидрирования органических веществ;
  • способом дегидрогалогенирования органических веществ.

Вот мы и рассмотрели все физические и химические характеристики алкинов, способы их получения, области применения в промышленности.